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and

M. Ivette Gomes
Centro de Estat́ıstica e Aplicações, Faculdade de Ciências, Universidade de Lisboa

and

B.G. Manjunath
Centro de Estat́ıstica e Aplicações, Universidade de Lisboa

Abstract

For heavy right tails and under a semi-parametric framework, we introduce a class of

location invariant estimators of a scale second-order parameter and study its asymptotic

non-degenerate behaviour. This class is based on the PORT methodology, with PORT

standing for peaks over random thresholds. The consistency and asymptotic normality of

the new class of estimators is achieved under a third-order condition on the right tail of

the underlying model F for intermediate and large ranks, respectively. An illustration of

the finite sample behaviour of the estimators is provided through a Monte-Carlo simulation

study.
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1 Introduction

Our interest lies in heavy right tails, i.e. we are dealing with a random sample Xn =

(X1, . . . , Xn) from an underlying distribution function (d.f.) F with a regularly varying right

tail. This means that, for a positive real ξ, the right tail-function

F (x) := 1− F (x)

is such that

lim
t→∞

F (tx)/F (t) = x−1/ξ, for all x > 0, (1.1)

i.e. F is a regularly varying function at infinity with an index of regular variation equal to −1/ξ,

ξ > 0. We then use the notation F ∈ RV−1/ξ.

Let us define

Gξ(x) :=

 exp
(
−(1 + ξ x)−1/ξ

)
, 1 + ξ x > 0, if ξ 6= 0,

exp(− exp(−x)), x ∈ R, if ξ = 0,
(1.2)

the so-called general extreme-value (EV) distribution. If (1.1) holds, we are in the domain of

attraction for maxima of Gξ, with ξ > 0. This means that it is possible to linearly normalise

the sequence of maximum values {Xn:n := max(X1, . . . , Xn)}n≥1, so that we get convergence

to a non-degenerate random variable (r.v.) with d.f. Gξ, in (1.2) (Gnedenko, 1943). We then

write F ∈ DM(Gξ>0). This type of heavy-tailed models appears often in practice, in fields like

telecommunication traffic (see Resnick, 1997, and Gomes, 2003), finance, insurance, economics,

ecology (see Reiss and Thomas, 2001, 2007) and biometry (see Hüsler, 2009), among others.

The parameter ξ, in (1.2), is the extreme-value index (EVI), one of the primary parameters of

extreme events.

Let F← denote the generalised inverse function of F , defined by F←(t) := inf {x : F (x) ≥ t} ,

and let U be the reciprocal tail quantile function of the r.v. X, defined as

U(t) := F←(1− 1/t), t ≥ 1.

For heavy right tails, we assume the validity of any of the first-order conditions below:

F ∈ DM(Gξ>0) ⇐⇒ F ∈ RV−1/ξ ⇐⇒ U ∈ RVξ. (1.3)
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The second equivalence above was proved in de Haan (1984). For several technical proofs in

the field of extreme value theory we further need information about the rate of convergence in

(1.3), assuming that for every x > 0,

lim
t→∞

lnU(tx)− lnU(t)− ξ lnx

A(t)
= ψρ(x) :=

 xρ−1
ρ , if ρ < 0,

lnx, if ρ = 0,
(1.4)

where |A| must then be in RVρ (Geluk and de Haan, 1987). Often, we further need information

on the rate of convergence in (1.4), and assume that for all x > 0,

lim
t→∞

lnU(tx)−lnU(t)−ξ lnx
A(t) − ψρ(x)

B(t)
=

 xρ+ρ
′−1

ρ+ρ′ , if min(ρ, ρ′) < 0,

lnx, if ρ = ρ′ = 0,
(1.5)

where |B| must then be in RVρ′ . Details on this precise third-order condition can be found in

Gomes et al. (2002), Fraga Alves et al. (2003, 2006) and more generally in Wang and Cheng

(2005).

For technical simplicity, we assume that ρ < 0 and that we can choose A(t) = ξβtρ, in

(1.4), with β a non-null real number or even a slowly varying function, i.e. a regularly varying

function with an index of regular variation equal to zero. This is equivalent to say that we are

working with Pareto right tails such that for C > 0,

U(t) = Ctξ
(
1 + ξβtρ/ρ+ o(tρ)

)
. (1.6)

The pair of second-order parameters (β, ρ), in (1.6), rules the rate of convergence in (1.4)

and is dependent on a possible shift in the data. More precisely, if we have a location or shift

parameter s ∈ R, not necessarily null, i.e. if F (x) = Fs(x) = F0(x − s), then U(t) ≡ Us(t) =

U0(t) + s and also (β, ρ) = (βs, ρs) depend obviously on s, with

(βs, ρs) :=


(−s/C,−ξ), if ξ + ρ0 < 0 and s 6= 0,

(β0 − s/C, ρ0), if ξ + ρ0 = 0 and s 6= 0,

(β0, ρ0), otherwise,

(1.7)

where β0 and ρ0 are respectively the scale and shape second-order parameters associated with

an unshifted model (s = 0). Further details on the influence of a shift s 6= 0 in the second-order

parameters are given in the Appendix.
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The adequate estimation of the second-order parameters β and ρ is of primordial importance

in the adaptive choice of the best number of top order statistics (o.s.’s) to be considered in

the EVI-estimation, as well as in the construction of second-order reduced-bias (SORB) or

minimum-variance reduced-bias (MVRB) EVI-estimators. Overviews of the subject can be

found in Chapter 6 of the book by Reiss and Thomas (2007), Beirlant et al. (2012) and Gomes

and Guillou (2014), among others. However, despite being scale invariant, many classes of

EVI-estimators are not location-invariant. Since the EVI does not change with shifts, location

invariance is surely a relevant and adequate property of the EVI-estimators. And such invariance

can be attained through the use of the PORT-methodology, introduced in the sequel, with

PORT standing for peaks over random thresholds, the terminology used in Araújo Santos et

al. (2006).

Let Xi:n, 1 ≤ i ≤ n, denote the o.s.’s associated with the random sample Xn = (X1, . . . , Xn)

from an underlying d.f. F . The class of estimators suggested here is a function of the sample of

excesses over a random threshold Xnq :n, with nq = bnqc + 1, where bxc stands for the integer

part of x. Such a sample is denoted by

X(q)
n :=

(
Xn:n −Xnq :n, Xn−1:n −Xnq :n, . . . , Xnq+1:n −Xnq :n

)
, (1.8)

where, we can have

• 0 < q < 1, for any F ∈DM(Gξ>0) (the random threshold, Xnq :n, is an empirical quantile);

• q = 0, for d.f.’s with a finite left endpoint xF := inf{x : F (x) > 0} (the random threshold

is the minimum, X1:n).

Any statistical inference methodology based on the sample of excesses X
(q)
n , defined in (1.8), is

called a PORT-methodology. This methodology enabled the introduction and study of classical

location/scale invariant EVI-estimators, like the PORT-Hill and the PORT-Moment estimators

in Araújo Santos et al. (2006). These PORT EVI-estimators were further studied for finite-

samples in Gomes et al. (2008). This methodology was also applied in the estimation of high

quantiles in Henriques-Rodrigues and Gomes (2009). PORT MVRB EVI-estimators have been

studied for finite samples and by Monte-Carlo simulation in Gomes et al. (2013), among others,

and exhibit quite interesting features, being often possible to choose a value of q that makes

the sample path of these PORT MVRB EVI-estimators reasonably stable in k, making thus the
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choice of k much more trivial than usual. All EVI-estimators are scale invariant, but there a few

classes of scale and location invariant semi-parametric EVI-estimators, like Pickand’s (Pickands,

1975), the peaks over threshold (Davison, 1984), and the ‘pseudo’ maximum likelihood EVI-

estimators based on the excesses over an intermediate o.s, Xn−k:n, studied in Drees et al. (2004),

and that can also be considered as PORT EVI-estimators.

The PORT methodology leads to location-invariant estimation, where the unshifted model

F0 plays thus a central role. In what follows, we use the notation χq for the q-quantile of the

d.f. F0, i.e. the value

χq := F←0 (q) (1.9)

(by convention χ0 := xF , the left endpoint of F0). Since nq/n → q, as n → ∞, we then know

that the o.s. Xnq :n, associated with a sample from F0, is a consistent estimator for F←0 (q) (van

der Vaart, 1998, p.308), i.e. we have the following convergence in probability:

Xnq :n
p−→

n→∞
χq, for 0 ≤ q < 1

(
χ0 = xF

)
. (1.10)

When applying the PORT-methodology, we are working with the sample of excesses in (1.8),

and we can assume that we are dealing with an unshifted d.f. F0 underlying the r.v. X0, to

which we are inducing a random shift, strictly related to χq, in (1.9). More precisely, we have

a shift s = −χq, i.e. we are working with Xq := X0 − χq, and use the simpler notation (βq, ρq)

for (β−χq , ρ−χq), with (βs, ρs) defined in (1.7). Hence

(βq, ρq) :=


(χq/C,−ξ), if ξ + ρ0 < 0 and χq 6= 0,

(β0 + χq/C, ρ0), if ξ + ρ0 = 0 and χq 6= 0,

(β0, ρ0), otherwise.

(1.11)

A class of location-invariant semi-parametric estimators of the so-called PORT-ρ second-

order parameter, ρq, in (1.11), was recently introduced and studied in Henriques-Rodrigues et

al. (2014), among others. These authors mention that the main motivation for the theoretical

study of a class of estimators of the shape second-order parameter ρq is related to its possible

use, concomitantly with a class of PORT estimators of the functional A, in (1.4), or at least of an

adequate location-invariant estimator of the scale parameter of such a A-function, in the study

of the asymptotic behaviour of second-order PORT-MVRB EVI-estimators. With the same
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motivation, we are now interested in the asymptotic behaviour of a class of location-invariant

semi-parametric estimators of the so-called PORT-β second-order parameter, βq, also in (1.11).

The technical contributions in Lemma 3.1 and Propositions 3.1 and 3.2 were already proved in

the above mentioned article, and are crucial for the proofs in this paper. But the derivation

of both consistency and asymptotic normality of the PORT-scale second-order parameter are

quite technical and specific of the PORT-β estimation. As mentioned above, our main and

final objective is the incorporation of both results in the theoretical study of the PORT MVRB

EVI-estimators, a work under progress. Such a study is obviously intricate but feasible, and

out of the scope of this article.

In Section 2, we introduce the new class of PORT-β estimators of the second-order parameter

βq in (1.11). In Section 3, we present a few preliminary asymptotic results related to the

PORT-methodology, under a third-order framework. In Section 4.1 we justify the class of

PORT-β estimators of the scale second-order parameter βq, addressing the possibility of shifted

heavy-tailed models, and refer the conditions required for their consistency. The non-degenerate

asymptotic behaviour of the new class of estimators is presented in Section 4.2. In Section 5, we

illustrate the finite sample behaviour of the new estimators through a Monte-Carlo simulation

study. In Section 6, we present the proofs of the results stated in Section 4.1. Finally, in

the Appendix we provide further details on the influence of a shift s 6= 0 in the second and

third-order parameters.

2 The class of semi-parametric PORT-β estimators

The building block of our estimators of the scale second-order parameter βq, defined in (1.11)

are the statistics used in Dekkers et al. (1989), Fraga Alves et al. (2003), Caeiro and Gomes

(2006), and Henriques-Rodrigues et al. (2014), among others, i.e. for α > 0 we consider the

moment statistics of the log-excesses,

M
(α)
n,k ≡M

(α)
n,k (Xn) :=

1

k

k∑
i=1

(lnXn−i+1:n − lnXn−k:n)α , (2.1)
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but now applied to the sample of excesses X
(q)
n , 0 ≤ q < 1, in (1.8). For an intermediate

k-sequence, i.e. a sequence k = kn of positive integers such that

k = kn →∞ and k = o(n) as n→∞, (2.2)

we shall thus consider the location and scale-invariant statistics,

M
(α,q)
n,k ≡M (α)

n,k (X(q)
n ) :=

1

k

k∑
i=1

(
ln
Xn−i+1:n −Xnq :n

Xn−k:n −Xnq :n

)α
, (2.3)

defined for k < n− nq, with M
(α)
n,k (Xn) ≡M (α)

n,k given in (2.1), α > 0.

Let E and Var denote the mean value and variance operators, respectively, let E denote a

unit exponential r.v. and let Γ(t) denote the complete Gamma function. For any real α > 0,

with ξ ≥ 0 and ρ < 0, let us define

µ(1)
α (ξ) := E

(
Eαe−ξE

)
=

Γ(α+ 1)

(1 + ξ)α+1
µ(1)
α := µ(1)

α (0) = Γ(α+ 1), (2.4)

σ(1)
α :=

√
Var(Eα) =

√
Γ(2α+ 1)− Γ2(α+ 1), (2.5)

µ(2)
α (ξ, ρ) := E

(
Eα−1 e−ξE (eρE − 1)/ρ

)
=

Γ(α)

ρ

((1 + ξ)α − (1 + ξ − ρ)α

(1 + ξ − ρ)α(1 + ξ)α

)
,

µ(2)
α (ρ) := µ(2)

α (0, ρ) =
Γ(α)

ρ

(1− (1− ρ)α

(1− ρ)α

)
,

σ(2)
α (ρ) :=

√
Var

(
Eα−1(eρE − 1)/ρ

)
=

√
µ

(3)
2α (ρ)−

(
µ

(2)
α (ρ)

)2
,

η(3)
α (ξ, ρ) := E

(
Eα−2

(
(e−ξE − 1)/(−ξ)

) (
(eρE − 1)/ρ

) )
=

 −
1
ξρ ln (1+ξ)(1−ρ)

1+ξ−ρ , if α = 1

− Γ(α)
ξρ(α−1)

{
1

(1+ξ−ρ)α−1 − 1
(1+ξ)α−1 − 1

(1−ρ)α−1 + 1
}
, if α 6= 1,

and

µ(3)
α (ρ) := E

(
Eα−2

(
(eρE − 1)/ρ

)2 )
=


1
ρ2

ln (1−ρ)2

1−2ρ , if α = 1

Γ(α)
ρ2(α−1)

{
1

(1−2ρ)α−1 − 2
(1−ρ)α−1 + 1

}
, if α 6= 1.

Let us further introduce the notations:

µ(j)
α (ρ) := µ

(j)
α (ρ)

µ
(1)
α

, j = 2, 3, µ(2)
α (ξ, ρ) := µ

(2)
α (ξ,ρ)

µ
(1)
α

, η(3)
α (ξ, ρ) := η

(3)
α (ξ,ρ)

µ
(1)
α

, (2.6)

σ(1)
α := σ

(1)
α

µ
(1)
α

, σ(2)
α (ρ) := σ

(2)
α (ρ)

µ
(1)
α

, (2.7)
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and for any θ1, θ2 > 0,

dα,θ1,θ2(ρ) := µ
(2)
αθ1

(ρ)− µ(2)
αθ2

(ρ). (2.8)

For tuning parameters ηq ∈ R (as detected in Caeiro and Gomes, 2006), α, θ1, θ2 ∈ R+, θ1 6= θ2,

we shall consider the PORT-versions of the r.v.’s used in the aforementioned paper for the

estimation of β, in (1.6), i.e.

D
(α,θ1,θ2,ηq ,q)
n,k (ξ) :=

M (αθ1,q)
n,k

µ
(1)
αθ1

ηq/θ1

−

M (αθ2,q)
n,k

µ
(1)
αθ2

ηq/θ2

, (2.9)

with M
(α,q)
n,k and µ

(1)
α defined in (2.3) and (2.4), respectively. As detailed in Section 4.1, under

adequate conditions upon the growth of k = kn, the study of the asymptotic behaviour of the

r.v.’s D
(α,θ1,θ2,ηq ,q)
n,k (ξ), in (2.9), enables us to introduce the class of consistent βq-estimators,

invariant for changes in location, and named PORT-β, given by

β̂
(α,θ1,θ2,ηq ,q)
n,k (ρ̂(q)) :=

2d2α,θ1,θ2(ρ̂(q))

αηqd2
α,θ1,θ2

(ρ̂(q))

(
k

n

)ρ̂(q) (D(α,θ1,θ2,ηq ,q)
n,k (ξ)

)2

D
(2α,θ1,θ2,ηq ,q)
n,k (ξ)

, (2.10)

with tuning parameters α, θ1, θ2 > 0, θ1 6= θ2, ηq ∈ R, q ∈ [0, 1), dα,θ1,θ2(ρ) and D
(α,θ1,θ2,ηq ,q)
n,k (ξ)

given in (2.8) and (2.9), respectively, and with ρ̂(q) the class of consistent ρq-estimators, invariant

for changes in location, studied in Henriques-Rodrigues et al. (2014). The class of PORT-ρ

estimators of the shape second-order parameter ρq, similar to the simplest class of ρ-estimators

in Fraga Alves et al. (2003), is also dependent on a tuning parameter τq ∈ R and is given by

ρ̂
(q)
k ≡ ρ̂

(τq ,q)
k ≡ ρ̂(1,2,3,τq ,q)

n,k|T :=
3
(
T

(1,2,3,τq ,q)
n,k − 1

)
T

(1,2,3,τq ,q)
n,k − 3

1
{
T

(1,2,3,τq ,q)
n,k ∈ (1, 3)

}
, (2.11)

where 1
{
A
}

denotes the indicator function of the event A, and with M
(α,q)
n,k given in (2.3),

T
(1,2,3,τq ,q)
n,k :=

(
M

(1,q)
n,k

)τq
−
(
M

(2,q)
n,k /2

)τq/2
(
M

(2,q)
n,k /2

)τq/2
−
(
M

(3,q)
n,k /6

)τq/3 ,
for any τq ∈ R, with the notation abτ = b ln a whenever we consider τq = 0. Moreover,

ρ̂(q) := ρ̂
(q)
b(n−nq)0.999c. Note that for the estimation of second-order parameters, the choice of kn

seems to be not crucial. A choice of the type bn1−εc usually works well both for the estimation
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of β and ρ provided that we choose tuning parameters q and ηq leading to high stability for

large values of k.

Caeiro and Gomes (2006) suggest in practice the consideration of (α, θ1, θ2) = (1, 1, 2),

for the classic β-estimation, in order to get a class of estimators dependent only on a tuning

parameter η ∈ R. Taking into account this suggestion we are led to the following functional

expression for the PORT-β estimators

β̂
(ηq ,q)
k ≡ β̂

(1,1,2,ηq ,q)
n,k (ρ̂(q))

:=


−2(2−ρ̂(q))2

ηq ρ̂(q)

(
k
n

)ρ̂(q) [(M(1,q)
n,k

)ηq
−
(
M

(2,q)
n,k /2

)ηq/2]2
(
M

(2,q)
n,k /2

)ηq
−
(
M

(4,q)
n,k /24

)ηq/2 , if ηq 6= 0,

−2(2−ρ̂(q))2
ρ̂(q)

(
k
n

)ρ̂(q) [ln(M(1,q)
n,k

)
− 1

2
ln
(
M

(2,q)
n,k /2

)]2
ln
(
M

(2,q)
n,k /2

)
− 1

2
ln
(
M

(4,q)
n,k /24

) , if ηq = 0.

(2.12)

This new class of PORT-β estimators depends on the tuning parameters ηq ∈ R and

q ∈ [0, 1), related to the PORT-methodology. These two tuning parameters provide an ade-

quate flexible class of estimators of βq, and their non-PORT versions, with a unique parameter,

say η ∈ R, have revealed to be suitable for practical purposes, despite of high volatile for small

up to moderate k comparatively to the β-estimators in Gomes and Martins (2002). The choice

of the tuning parameter q can be performed with a generalisation of the algorithm proposed in

Gomes and Henriques-Rodrigues (2012). This research, is however, beyond of the scope of this

paper, where a heuristic choice is provided.

3 Technical results related to the PORT-methodology

3.1 The second-order PORT-framework for heavy-tailed models

Under the aforementioned set-up in Section 1, the transformed r.v., Xq = X0 − χq, with χq

given in (1.9), has an associated quantile function given by Uq(t) = U0(t)−χq. The second-order

condition in (1.4) translates as

lim
t→∞

lnUq(tx)− lnUq(t)− ξ lnx

Aq(t)
= ψρq(x) :=

 xρq−1
ρq

, if ρq < 0,

lnx, if ρq = 0,
(3.1)

for all x > 0. Moreover, |Aq| ∈ RVρq , ρq ≤ 0, and Aq relates to A0 according to the following

lemma.
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Lemma 3.1 (Henriques-Rodrigues et al., 2014). Assume that U0 ∈ RVξ satisfies the second-

order condition in (3.1). Then Uq(t) = U0(t) − χq, with χq defined in (1.9), is such that

Uq ∈ RVξ and (3.1) holds with (βq, ρq) given in (1.11) and

Aq(t) :=


ξχq/U0(t), if ξ + ρ0 < 0 and χq 6= 0,

A0(t) + ξχq/U0(t), if ξ + ρ0 = 0 and χq 6= 0,

A0(t), if ξ + ρ0 > 0 or χq = 0.

(3.2)

3.2 Third-order framework and asymptotic behaviour of auxiliary statistics

Next, we present the asymptotic behaviour of the statistics M
(α,q)
n,k defined in (2.3), based on

the sample of excesses X
(q)
n , 0 ≤ q < 1, defined in (1.8). This requires a third-order framework

because we further need to know the rate of convergence in (3.1). The third-order condition in

(1.5) translates as

lim
t→∞

lnUq(tx)−lnUq(t)−ξ lnx
Aq(t)

− ψρq(x)

Bq(t)
=


x
ρq+ρ

′
q−1

ρq+ρ′q
, if min(ρq, ρ

′
q) < 0,

lnx, if ρq = ρ′q = 0,
(3.3)

where |Bq| must then be in RVρ′q . For technical simplicity, we shall assume that ρq, ρ
′
q < 0.

Let us further introduce the following notations. With Ei independent and identically

distributed (i.i.d.) unit exponential r.v.’s, and, with σ
(1)
α given in (2.5), define the asymptotically

standard normal r.v.’s

Z
(α)
k :=

√
k
(

1
k

k∑
i=1

Eαi − Γ(α+ 1)
)
/σ(1)

α .

Now, together with (2.7), we can combine these as follows:

W
(α,θ1,θ2)
k := σ

(1)
αθ1
Z

(αθ1)
k /θ1 − σ(1)

αθ2
Z

(αθ2)
k /θ2. (3.4)

Finally, for η ∈ R, α, θ > 0, and with
(
µ

(2)
α (ρ), µ

(2)
α (ξ, ρ), η

(3)
α (ξ, ρ)

)
defined in (2.6), we define

cα,θ,η(ρ) := (αθ − 1)µ
(3)
αθ (ρ) + α(η − θ)

(
µ

(2)
αθ (ρ)

)2
, (3.5)

gα,θ,η(ξ, ρ) := µ
(2)
αθ (ξ, ρ) + (αθ − 1)η

(3)
αθ (ξ, ρ) + α(η − θ)µ(2)

αθ (ρ)µ
(2)
αθ (−ξ), (3.6)

hα,θ,η(ξ) := 2µ
(2)
αθ (−2ξ) + (αθ − 1)µ

(3)
αθ (−ξ) + α(η − θ)

(
µ

(2)
αθ (−ξ)

)2
. (3.7)
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Note that the statisticsM
(α,q)
n,k , in (2.3), depend on q through χq, in (1.9) (see also (1.10)), but

are obviously independent on any shift s imposed to the data. We can thus assume throughout

that s = 0. We next present, under the third-order framework provided in (3.3), the asymptotic

behaviour, as n → ∞, of M
(α,q)
n,k and D

(α,θ1,θ2,ηq ,q)
n,k , in (2.3) and (2.9), respectively, based on

the sample of excesses X
(q)
n , 0 ≤ q < 1, in (1.8). These results were stated and proven in

Henriques-Rodrigues et al. (2014):

Proposition 3.1 (Henriques-Rodrigues et al., 2014). Let us assume that (2.2) holds, as well

as the third-order condition in (3.3), for ρ0, ρ
′
0 < 0. We then get for M

(α,q)
n,k , in (2.3),

α > 0, k < n − nq, with χq and M
(α)
n,k (for s = 0), given in (1.10) and (2.1), respectively, µ

(1)
α

and
(
µ

(2)
α (ρ), µ

(2)
α (ξ, ρ), µ

(3)
α (ρ), η

(3)
α (ξ, ρ)

)
respectively given in (2.4) and (2.6), the distributional

representation,

M
(α,q)
n,k

d
= M

(α)
n,k +

αξαµ
(1)
α χq

U0(n/k)

{
µ(2)
α (−ξ) + µ

(2)
α (ξ,ρ0)+(α−1) η

(3)
α (ξ,ρ0)

ξ A0(n/k)(1 + op(1))

+
χq

U0(n/k)

(
µ(2)
α (−2ξ) + (α−1)

2 µ(3)
α (−ξ)

)
(1 + op(1))

}
.

Let us introduce the notations,

uα,θ1,θ2,η(ρ) :=
{
cα,θ1,η(ρ)− cα,θ2,η(ρ)

}
/(2ξ), (3.8)

vα,θ1,θ2(ρ, ρ′) := µ
(2)
αθ1

(ρ+ ρ′)− µ(2)
αθ2

(ρ+ ρ′) ≡ dα,θ1,θ2(ρ+ ρ′), (3.9)

wα,θ1,θ2,η(ξ, ρ) := {gα,θ1,η(ξ, ρ)− gα,θ2,η(ξ, ρ)}/ξ, (3.10)

yα,θ1,θ2,η(ξ) := {hα,θ1,η(ξ)− hα,θ2,η(ξ)}/2, (3.11)

with dα,θ1,θ2(ρ), cα,θ,η(ρ), gα,θ,η(ξ, ρ) and hα,θ,η(ξ) defined in (2.8), (3.5), (3.6) and (3.7), re-

spectively.

Proposition 3.2 (Henriques-Rodrigues et al., 2014). For intermediate k, as in (2.2), let us

assume the validity of the third-order condition in (3.3). We then get for D
(α,q)
n,k , in (2.9), α > 0,

k < n−nq, with χq 6= 0 and dα,θ1,θ2(ρ) given in (1.10) and (2.8), respectively, the distributional
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representation,

D
(α,θ1,θ2,ηq ,q)
n,k (ξ)

d
= αηqξ

αηq

(
W

(α,θ1,θ2)
k

α
√
k

+ A0(n/k)
ξ

{
dα,θ1,θ2(ρ0)

+ uα,θ1,θ2,ηq(ρ0)A0(n/k)(1 + op(1)) + vα,θ1,θ2(ρ0, ρ
′
0)B0(n/k)(1 + op(1))

}
+

χq
U0(n/k)

{
dα,θ1,θ2(−ξ) + wα,θ1,θ2,ηq(ξ, ρ0)A0(n/k)(1 + op(1)) +

χq yα,θ1,θ2,ηq (ξ)

U0(n/k) (1 + op(1))

})
,

(3.12)

where W
(α,θ1,θ2)
k is the asymptotic standard normal r.v. in (3.4).

4 Asymptotic behaviour of the PORT-β estimators

4.1 Consistency of the PORT-β estimators

From the definition of the parameter βq, in (1.11), we can see that the consistency of the

PORT-β estimators is related to the vector (ξ, ρ0) of the unshifted model F0 associated with

the available data. Therefore we shall consider three different regions:

(i) R1 := {ξ + ρ0 < 0 and χq 6= 0},

(ii) R2 := {ξ + ρ0 > 0 or (ξ + ρ0 ≤ 0 and χq = 0)},

(iii) R3 := {ξ + ρ0 = 0 and χq 6= 0}.

We may state the following:

Theorem 4.1. Under the validity of the second-order condition in (3.1), with ρq < 0, (βq, ρq)

defined in (1.11), ρ̂(q) any consistent estimator of ρq such that (ρ̂(q) − ρq) ln(n/k) = op(1), and

with β̂
(α,θ1,θ2,ηq ,q)
n,k defined in (2.10),

β̂
(α,θ1,θ2,ηq ,q)
n,k

p−→
n→∞

βq,

for any real α > 0, ηq ∈ R, θ1, θ2 ∈ R+\{1}, θ1 6= θ2 and 0 < q < 1 or q = 0 if χ0 is finite,

provided that k is an intermediate sequence, as in (2.2), and moreover

√
kAq(n/k)→∞, as n→∞, (4.1)

with Aq(·) defined in (3.2).
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Remark 4.1. Note that when we consider models F0 ∈ R1, A0(t) = o(1/U0(t)) and with

Aq(t) = ξχq/U0(t), by (3.2), condition (4.1) corresponds to
√
k/U0(n/k) → ∞, as n → ∞.

For models F0 ∈ R2, 1/U0(t) = o(A0(t)) and since Aq(t) = A0(t), condition (4.1) is equiv-

alent to
√
kA0(n/k) → ∞, as n → ∞. Finally, for models F0 ∈ R3, 1/U0(t) = O(A0(t))

and since Aq(t) = A0(t) + ξχq/U0(t), condition (4.1) is equivalent to
√
kA0(n/k) → ∞ or

√
k/U0(n/k)→∞, as n→∞.

4.2 Non-degenerate asymptotic behaviour of the PORT-β estimators

In this section, and under a third-order framework, we derive the non-degenerate asymptotic

properties of the PORT-β classes of estimators introduced with all the generality in (2.10), and

particularised in (2.12). We first state the following result:

Proposition 4.1 (Fraga Alves et al., 2003). Under the validity of the second-order condition

in (1.4), with ρ < 0, if (2.2) holds and
√
kA(n/k) → ∞, as n → ∞, the asymptotic variance

of W
(α,θ1,θ2)
k , in (3.4), is

σ2
W |α,θ1,θ2 = 2

α

(
Γ(2αθ1)
θ31Γ2(αθ1)

+ Γ(2αθ2)
θ32Γ2(αθ2)

− (θ1+θ2)Γ(α(θ1+θ2))
θ21θ

2
2Γ(αθ1)Γ(αθ2)

)
−
(

1
θ1
− 1

θ2

)2
. (4.2)

Proposition 4.2 (Caeiro and Gomes, 2006). Under the validity of the second-order condition

in (1.4), with ρ < 0, if (2.2) holds and
√
kA(n/k)→∞, as n→∞, the asymptotic covariance

of (W
(α,θ1,θ2)
k ,W

(2α,θ1,θ2)
k ), with W

(α,θ1,θ2)
k in (3.4), is given by

σW |α,θ1,θ2 = 1
2α

(
3Γ(3αθ1)

θ31Γ(αθ1)Γ(2αθ1)
− (θ1+2θ2)Γ(α(θ1+2θ2))

θ21θ
2
2Γ(αθ1)Γ(2αθ2)

− (2θ1+θ2)Γ(α(2θ1+θ2))
θ21θ

2
2Γ(2αθ1)Γ(αθ2)

+ 3Γ(3αθ2)
θ32Γ(αθ2)Γ(2αθ2)

)
−
(

1
θ1
− 1

θ2

)2
. (4.3)

Let us further use the notations:

y(α,θ1,θ2,ηq)(ξ,−ξ) :=
2yα,θ1,θ2,ηq (ξ)

dα,θ1,θ2 (−ξ) −
y2α,θ1,θ2,ηq (ξ)

d2α,θ1,θ2 (−ξ) , (4.4)

z(α,θ1,θ2)(ρ,−ξ) :=
2dα,θ1,θ2 (ρ)

dα,θ1,θ2 (−ξ) −
d2α,θ1,θ2 (ρ)

d2α,θ1,θ2 (−ξ) , (4.5)

u(α,θ1,θ2,ηq)(ρ) :=
2uα,θ1,θ2,ηq (ρ)

dα,θ1,θ2 (ρ) − u2α,θ1,θ2,ηq (ρ)

d2α,θ1,θ2 (ρ) , (4.6)

v(α,θ1,θ2)(ρ, ρ′) :=
2vα,θ1,θ2 (ρ,ρ′)

dα,θ1,θ2 (ρ) −
v2α,θ1,θ2 (ρ,ρ′)

d2α,θ1,θ2 (ρ) , (4.7)

w(α,θ1,θ2,ηq)(ξ, ρ) :=
2wα,θ1,θ2,ηq (ξ,ρ)

dα,θ1,θ2 (ρ) − w2α,θ1,θ2,ηq
(ξ,ρ)

d2α,θ1,θ2 (ρ) , (4.8)
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with uα,θ1,θ2,η(ρ), vα,θ1,θ2,η(ρ, ρ
′), wα,θ1,θ2,η(ξ, ρ) and yα,θ1,θ2,η(ξ) given in (3.8), (3.9), (3.10) and

(3.11), respectively.

We can now state the non-degenerate asymptotic behaviour of the class of PORT-β estima-

tors, in (2.10). The regions R1 / R2 given above, are now split in

• R11 := {ρ0 < −2ξ and χq 6= 0} / R21 := {−ξ < ρ0 < − ξ
2 and χq 6= 0},

• R12 := {ρ0 = −2ξ and χq 6= 0} / R22 := {ρ0 = − ξ
2 and χq 6= 0}, and

• R13 := {−2ξ < ρ0 < −ξ and χq 6= 0} / R23 := { ξ2 < ρ0 < 0 or (ξ > −ρ0 and χq = 0)}.

Theorem 4.2. Let us assume that the third-order condition in (3.3) holds, with ρ0, ρ′0 < 0

and consider the PORT-ρ class of estimators, β̂
(α,θ1,θ2,ηq ,q)
n,k , defined in (2.10), with βq given in

(1.11). Then, with θ1 < θ2, real numbers different from 1, α > 0, ηq ∈ R and 0 < q < 1 or

q = 0 provided that χ0 = xF is finite, and intermediate sequences of positive integers k = kn,

as in (2.2), such that (4.1) holds.

i) In R1, if we further assume that lim
n→∞

√
kA0(n/k) = λ and lim

n→∞

√
k/U2

0 (n/k) = λU , we

get
√
k

U0(n/k)

(
β̂

(α,θ1,θ2,ηq ,q)
n,k (ρq)− βq

)
d−→

n→∞
N
(
•
µ

(α,θ1,θ2,ηq ,q)
,
•
σ

2

α,θ1,θ2,q

)
,

with

•
µ

(α,θ1,θ2,ηq ,q)
=


βqχq λU y

(α,θ1,θ2,ηq)(ξ,−ξ), in R11

βq
(λ z(α,θ1,θ2)(ρ0,−ξ)

ξχq
+ χq λU y

(α,θ1,θ2,ηq)(ξ,−ξ)
)
, in R12

βq
λ z(α,θ1,θ2)(ρ0,−ξ)

ξχq
, in R13,

y(α,θ1,θ2,η)(ξ, ρ) and z(α,θ1,θ2)(ρ,−ξ) defined in (4.4) and (4.5), respectively. Moreover,

•
σ

2

α,θ1,θ2,q =
(
βq
αχq

)2
Var

(
2W

(α,θ1,θ2)
k

dα,θ1,θ2 (−ξ) −
W

(2α,θ1,θ2)
k

2d2α,θ1,θ2 (−ξ)

)
= 1

(Cα)2

[
4σ2
W |α,θ1,θ2

d2α,θ1,θ2
(−ξ) +

σ2
W |2α,θ1,θ2

4d22α,θ1,θ2
(−ξ) −

2σW |α,θ1,θ2
dα,θ1,θ2 (−ξ)dα,θ1,θ2 (−ξ)

]
,

with σ2
W |α,θ1,θ2, σW |α,θ1,θ2 given in (4.2), (4.3), respectively.

ii) In R2, if we further assume that lim
n→∞

√
kA2

0(n/k) = λA, lim
n→∞

√
kA0(n/k)B0(n/k) = λB

and lim
n→∞

√
k/U0(n/k) = λ′, we get

√
kA0(n/k)

(
β̂

(α,θ1,θ2,ηq ,q)
n,k − βq

)
d−→

n→∞
N
(
µ(α,θ1,θ2,ηq ,q), σ2

α,θ1,θ2,q

)
,
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where with µ(α,θ1,θ2,ηq)(ρ0, ρ
′
0) := u(α,θ1,θ2,ηq)(ρ0)λA + v(α,θ1,θ2)(ρ0, ρ

′
0)λB, and

z(α,θ1,θ2,η)(−ξ, ρ), u(α,θ1,θ2,η)(ρ) and v(α,θ1,θ2)(ρ, ρ′) given in (4.5), (4.6) and (4.7), re-

spectively,

µ(α,θ1,θ2,ηq ,q) =


β0ξχqλ

′z(α,θ1,θ2,ηq)(−ξ, ρ0), in R21

β0

(
µ(α,θ1,θ2,ηq)(ρ0, ρ

′
0) + ξχqλ

′z(α,θ1,θ2,ηq)(−ξ, ρ0)
)
, in R22

β0µ
(α,θ1,θ2,ηq), in R23.

Additionally,

σ2
α,θ1,θ2,q =

(
ξβq
α

)2
Var

(
2W

(α,θ1,θ2)
k

dα,θ1,θ2 (ρ0) −
W

(2α,θ1,θ2)
k

2d2α,θ1,θ2 (ρ0)

)
=

(
ξβ0
α

)2
[

4σ2
W |α,θ1,θ2

d2α,θ1,θ2
(ρ0)

+
σ2
W |2α,θ1,θ2

4d22α,θ1,θ2
(ρ0)
− 2σW |α,θ1,θ2

dα,θ1,θ2 (ρ0)dα,θ1,θ2 (ρ0)

]
=: σ2

α,θ1,θ2 ,

with σ2
α,θ1,θ2

the asymptotic variance of the classical β-estimator introduced in Caeiro and

Gomes (2006), and with σ2
W |α,θ1,θ2, σW |α,θ1,θ2 given in (4.2), (4.3), respectively.

iii) In R3, if we further assume that lim
n→∞

√
kA2

0(n/k) = λA, lim
n→∞

√
kA0(n/k)B0(n/k) = λB

and lim
n→∞

√
kA0(n/k)/U0(n/k) = λAU and λ̃ = lim

n→∞
1/
(
A0(n/k)U0(n/k)

)
6= 0, we get

√
kA0(n/k)

(
β̂

(α,θ1,θ2,ηq ,q)
n,k − βq

)
d−→

n→∞
N
(
µ̃(α,θ1,θ2,ηq ,q), σ̃ 2

α,θ1,θ2,q

)
,

with

σ̃2
α,θ1,θ2,q =

(
βq σα,θ1,θ2

β0(1 + ξλ̃χq)

)2

,

where σ2
α,θ1,θ2

is the asymptotic variance of the classical β-estimator introduced in Caeiro

and Gomes (2006), and

µ̃(α,θ1,θ2,ηq ,q) =
βq

1 + ξλ̃χq

(
u(α,θ1,θ2,ηq)(ρ0)λA + v(α,θ1,θ2)(ρ0, ρ

′
0)λB

+ ξχq

(
w(α,θ1,θ2,ηq)(ξ, ρ0) + χqλ̃ y(α, θ1, θ2, ηq)(ξ, ρ0)

)
λAU

)
,

with y(α,θ1,θ2,ηq)(ξ, ρ), u(α,θ1,θ2,η)(ρ), v(α,θ1,θ2)(ρ, ρ′) and w(α,θ1,θ2,ηq)(ξ, ρ) defined in (4.4),

(4.6), (4.7) and (4.8), respectively.
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We finally present the non-degenerate behaviour of the PORT-β estimators, in (2.12), de-

pendent only on two tuning parameters, (q, ηq). This is a particular case that can be relevant

in practice, and where we get simpler expressions for asymptotic variances and bias.

Corollary 4.1. Under the validity of the third-order condition in (3.3), with ρ0, ρ′0 < 0, and

for the particular case (α, θ1, θ2) = (1, 1, 2), we have the validity of the following asymptotic

distributional representation for the PORT-β estimator, β̂
(ηq ,q)
k , in (2.12).

i) In R1, with βq = χq/C, and with the same notation as before for R11, R12 and R13,

β̂
(ηq ,q)
k

d
= βq +

βq
•
σρq√

k/U0(n/k)
WR1
k

+


βqχq y(ξ,−ξ)
U0(n/k) (1 + op(1)), in R11

βq

(
z(ρ0,−ξ)
ξχq

A0(n/k)U0(n/k) +
χq y(ξ,−ξ)
U0(n/k)

)
(1 + op(1)), in R12

βq
z(ρ0,−ξ)
ξχq

A0(n/k)U0(n/k)(1 + op(1)), in R13,

where WR1
k is asymptotically standard normal, and with

Aξ := 32ξ8 + 212ξ7 + 568ξ6 + 780ξ5 + 538ξ4 + 93ξ3 − 108ξ2 − 68ξ − 12 (4.9)

Bξ := 6 + ξ(4 + ξ) (4.10)

Cξ,ρ := ρ3(21 + 5ξBξ)− 2ρ2(30 + 7ξBξ) + 6ρ(9 + 2ξBξ)− 2(6 + ξBξ) (4.11)

y(ξ,−ξ) =
ξ(2+ξ)(8+18ξ+16ξ2+5ξ3)(1+2ξ)4η+2ξ2Aξ

2(1+ξ)2(2+ξ)2(1+2ξ)4(2+2ξ+ξ2)

z(ρ0,−ξ) = − (1+ξ)5(2−ρ0)Cξ,ρ0
(2+ξ)2(2+2ξ+ξ2)(3+3ξ+ξ2)(1−ρ0)6

and
•
σ

2

ρq ≡
•
σ

2

−ξ =
(

1
χq

)2 (
1+ξ
2+ξ

)2
(

21ξ4+68ξ3+86ξ2+68ξ+33
ξ2

)
.

ii) In R2, with βq ≡ β0 and again with the same notation as before for R21, R22 and R23,

β̂
(ηq ,q)
k

d
= βq +

βqσρq√
kA0(n/k)

WR2
k

+


βq

ξχqz(−ξ,ρ0)
A0(n/k)U0(n/k)(1 + op(1)), in R21

βq

(
µ(ρ0, ρ

′
0) +

ξχqz(−ξ,ρ0)
A0(n/k)U0(n/k)

)
(1 + op(1)), in R22

βqµ(ρ0, ρ
′
0)(1 + op(1)), in R23,
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where µ(ρ, ρ′) = uρA0(n/k) + vρ,ρ′B0(n/k), with uρ and vρ,ρ′, given by

uρ ≡ uρ(ηq) = −
2ρ2
(

4−ρ(2−ρ)
(

16ρ5−68ρ4+116ρ3−96ρ2+33ρ+2
))

2ξ(2−ρ)2(1−ρ)2(1−2ρ)3(2−2ρ+ρ2)

− ηq(2−ρ)(1−2ρ)3
(

5ρ3−16ρ2+18ρ−8
)

2ξ(2−ρ)2(1−ρ)2(1−2ρ)3(2−2ρ+ρ2)
(4.12)

and

vρ,ρ′ =
(1−ρ)3((2−ρ)2(1−ρ)3(2−2ρ+ρ2)−2(2−ρ)2(1−ρ)2(5−4ρ+2ρ2)ρ′)

(2−ρ)2(2−2ρ+ρ2)(1−(ρ+ρ′))6

(1−ρ)3(2(1−ρ)(29−55ρ+44ρ2−18ρ3+3ρ4)ρ′2−2(17−35ρ+29ρ2−12ρ3+2ρ4)ρ′3)
(2−ρ)2(2−2ρ+ρ2)(1−(ρ+ρ′))6

− (1−ρ)3(−7+9ρ−5ρ2+ρ3)ρ′4

(2−ρ)2(2−2ρ+ρ2)(1−(ρ+ρ′))6 , (4.13)

respectively. Moreover, WR2
k is asymptotically standard normal,

σ2
ρq ≡ σ2

ρ0 ≡ σ
2 =

(
ξ(1−ρ0)

2−ρ0

)2
(

21ρ40−68ρ30+86ρ20−68ρ0+33

ρ20

)
, (4.14)

z(−ξ, ρ0) = − (1−ρ0)5(2+ξ)C−ρ0,ξ
(2−ρ0)2(2−2ρ0+ρ20)(3−3ρ0+ρ20)(1+ξ)6

,

with Bξ and Cξ,ρ defined in (4.10) and (4.11), respectively.

iii) In R3, with βq = β0 + χq/C and with λ̃ = lim
n→∞

1/
(
A0(n/k)U0(n/k)

)
= (ξβ0C)−1 6= 0,

with C given in (1.6),

β̂
(ηq ,q)
k

d
= βq+

βqσ̃ρq√
kA0(n/k)

WR3
k +

βq

1 + ξλ̃χq

(
u(ρ0)A0(n/k) + v(ρ0, ρ

′
0)B0(n/k)

)
(1+op(1))

+
βq

1 + ξλ̃χq

ξχq
(
w(ξ, ρ0) + χqλ̃ y(ξ, ρ0)

)
U0(n/k)

 (1 + op(1)),

where WR3
k is an asymptotically standard normal r.v. with σ̃2

ρq =
(
σ/(1 + ξλ̃χq)

)2
, σ2

given in (4.14), uρ and vρ,ρ′, defined in (4.12) and (4.13), respectively, and

w(ξ, ρ0) = w(−ρ0, ρ0) = − (−8+18ρ0−16ρ20+5ρ30)ηq
(2−ρ0)(1−ρ0)2(2−2ρ0+ρ20)

+
2ρ0
(

14−ρ0(91−221ρ0+216ρ20+25ρ30−252ρ40+240ρ50−100ρ60+16ρ70)
)

(1−2ρ0)4(2−ρ0)2(1−ρ0)2(2−2ρ0+ρ20)
,

y(ξ, ρ0) = y(−ρ0, ρ0) =
−ρ0(2−ρ0)(8−18ρ0+16ρ20−5ρ30)(1−2ρ0)4ηq+2ρ20A−ρ0

2(1−ρ0)2(2−ρ0)2(1−2ρ0)4(2−2ρ0+ρ20))
,

with Aξ defined in (4.9).
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5 A Monte-Carlo simulation

As an illustration, we next present in Figures 1 to 4, the mean values (E) and the root mean

square errors (RMSE), of the classical estimator, denoted by β̂
(η)
k , and the PORT-β estimators{

β̂
(ηq ,q)
k ≡ β̂(1,1,2,ηq ,q)

n,k (ρ̂(q))
}
q=0, 0.1, 0.25

, as defined in (2.12), as a function of the sample fraction

k/n, for a sample size n = 5000. The results are associated with the output of a simulation of size

1000, related to underlying Fréchet parents F0(x) = exp(−x−1/ξ), x > 0, with ξ = 0.5 and ξ = 2

(ρ0 = −1, β0 = 0.5), Burr parents F0(x) = 1 − (1 + x−ρ/ξ)1/ρ, x > 0 with (ξ, ρ0) = (0.5,−1),

(ξ, ρ0) = (1,−0.5), β0 = 1 and the shifted models Fs(x) = F0(x− s), with s = 1. We have here

used τq = 0, the value suggested in several other research papers for the PORT-ρ estimators

ρ̂
(q)
k ≡ ρ̂

(τq ,q)
k , in (2.11). The choice τ = 0 has been heuristically suggested and used before for

the classic ρ-estimation in the region |ρ| ≤ 1 (see Fraga Alves et al. (2003), for further details).

The heuristic criteria proposed in Fraga Alves et al. (2003) also suggests the use of τ = 1 in the

region |ρ| > 1. And indeed τ can be even negative, as detected in Caeiro and Gomes (2006).

Note that for both models we have ξ+ ρ0 6= 0, and taking into account Remark 6.3 we have for

the Fréchet model,

βq ≡βFq =

 χq = (− ln q)−ξ, if ξ + ρ0 < 0 and χq 6= 0 (0 < q < 1),

β0 = 0.5, if ξ + ρ0 > 0 or (ξ + γ < 0 and χq = 0 (q = 0)),
(5.1)

and for the Burr model

βq ≡βBq =

 χq = (q−1 − 1)−0.5, if ξ + ρ0 < 0 and χq 6= 0 (0 < q < 1),

β0 = 1, if ξ + ρ0 > 0 or (ξ + γ < 0 and χq = 0 (q = 0)).
(5.2)

As mentioned in Caeiro and Gomes (2006) the choice of the tuning parameter η related to

classical β-estimator depends heavily on the model and the best choices for η for the Fréchet

and Burr models are provided by negative values of this control parameter. Taking this in

consideration we propose the following heuristic criteria for the choice of the tuning parameter

ηq related to the class of estimators in (2.12). On the basis of the choice for η0 provided in

Caeiro and Gomes (2006), for models with a support [0,∞), C = 1 and a choice 0 ≤ q1 < q2 < qr
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(0 ≤ χq1 ≤ · · · ≤ χqr), choose:

ηq =


η0

bχqr×10c/10 , if ξ + ρ0 < 0 and χqr 6= 0 and χqr < β0 (0 < qr < 1),

η0bχq1 × 10c/10, if ξ + ρ0 < 0 and χq1 6= 0 and χq1 > β0 (0 < q1 < 1),

η0, if ξ + ρ0 > 0 or (ξ + γ < 0 and χq1 = 0 (q1 = 0)).

(5.3)

The values of η0 ≡ η proposed by Caeiro and Gomes (2006) for similar Fréchet and Burr models

were η0 = −3 and η0 = −1.2, respectively (see Figures 2 to 4 of the aforementioned paper)

and the correspondent ηq values, according to (5.3), and the choices q1 = 0.1 < q2 = 0.25 are

ηq1 = ηq2 = −1.8 for the Fréchet model with ξ = 0.5 and ηq1 = ηq2 = −3 for the Fréchet

model with ξ = 2. For the Burr models under consideration we have chosen ηq1 = ηq2 = −2.4

when (ξ, ρ0) = (0.5,−1) and ηq1 = ηq2 = −1.2 when (ξ, ρ0) = (1,−0.5). Moreover, and due

to the high volatility of the β-estimator for shifted Fréchet models, we have not represented

graphically such a path.

Figure 1: Mean values of the estimators under consideration for Fréchet unshifted (s = 0) parents,

with ξ = 0.5 (left) and Burr unshifted (s = 0) parents with (ξ, ρ0) = (0.5,−1) (right), and sample size

n = 5000.

We now would like to emphasise the following points:

• There is only a light improvement in all estimators as the sample size increases, and a

high volatility of the classical β-estimators for shifted models. This is the reason why we

have not represented them in the previous figures.

• For smaller sample sizes n, the sample paths of all estimators for small up to moderate

k-values are even more volatile, but of the same type. Also the sample paths associated
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Figure 2: RMSEs of the estimators under consideration for Fréchet unshifted (s = 0) parents, with

ξ = 0.5 (left) and Burr unshifted (s = 0) parents with (ξ, ρ0) = (0.5,−1) (right), and sample size

n = 5000.

Figure 3: Mean values of the estimators under consideration for Fréchet unshifted (s = 0) parents,

with ξ = 2 (left) and Burr unshifted (s = 0) parents with (ξ, ρ0) = (1,−0.5) (right), and sample size

n = 5000.

with the Fréchet model are more volatile than the ones associated with the Burr model.

This pattern was also detected by Caeiro and Gomes (2006) for the classical β-estimation.

• When we are in the region ξ+ρ0 < 0 (see Figure 1), the PORT-β estimator should converge

to βq, in (5.1) and (5.2), for the Fréchet and Burr models, respectively. The pattern of the

PORT-β estimators does depend on χq, contrarily to the one of the PORT-ρ estimators

in Henriques-Rodrigues et al. (2014), making the selection a bit more intricate.

• For the Burr model the sample path of the classical β-estimator almost overlaps or even

overlaps the sample path of the PORT-β estimator associated with q = 0, whereas for the
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Figure 4: RMSEs of the estimators under consideration for Fréchet unshifted (s = 0) parents, with

ξ = 2 (left) and Burr unshifted (s = 0) parents with (ξ, ρ0) = (1,−0.5) (right), and sample size n = 5000.

Fréchet model these same sample paths have a quite different behaviour.

• The PORT-β estimators associated with the ηq-rule, in (5.3), are able to beat the classical

ones regarding minimum RMSE, even for very large sample sizes, and when we look at

moderate and large values of k/n for the Fréchet model and for large values of k/n for

the Burr model, as can be seen in Table 1.

Fréchet0.5 Burr0.5,−1

β̂• k•0/n RMSE•
0 β̂• k•0/n RMSE•

0

β̂(−3)|s = 0 0.970 0.0369 β̂(−1.2)|s = 0 1.000 0.0121

β̂(−3,0) 0.855 0.0297 β̂(−1.2,0) 1.000 0.0077

β̂(−1.8,0.1) 0.900 0.0181 β̂(−2.4,0.1) 0.900 0.0736

β̂(−1.8,0.25) 0.737 0.0043 β̂(−2.4,0.25) 0.724 0.0043

Fréchet2 Burr1,−0.5

β̂• k•0/n RMSE•
0 β̂• k•0/n RMSE•

0

β̂(−3)|s = 0 0.970 0.0361 β̂(−1.2)|s = 0 1.000 0.0259

β̂(−3,0) 0.965 0.0347 β̂(−1.2,0) 1.000 0.0277

β̂(−3,0.1) 0.858 0.0320 β̂(−1.2,0.1) 0.875 0.0085

β̂(−3,0.25) 0.718 0.0351 β̂(−1.2,0.25) 0.727 0.0108

Table 1: Values of k•0 := argminkRMSE
(
β̂•
k

)
and RMSE•

0 := RMSE
(
β̂•
k•
0

)
for the different estimators

and models under consideration, and a sample size n = 5000
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• The adequate selection of the tuning parameters η0 and ηq is crucial. The choice we

have used here is based on a heuristic criteria that surely is not optimal for the PORT-β

estimation, but it works for a wide variety of models. Another type of choice, similar to

the one devised for the selection of k through the use of the bootstrap methodology (see

Gomes et al., 2012, among others) is surely also an interesting topic of research, beyond

the scope of this paper.

6 Proofs

Proof. [Theorem 4.1] (i) In the region R1, A0(t) = o(1/U0(t)), as t → ∞, the last term of

the right-hand side of (3.12) is the dominant one, and the r.v. D
(α,θ1,θ2,ηq ,q)
n,k (ξ)/(1/U0(n/k))

converges in probability to αηqξ
αηqχq dα,θ1,θ2(−ξ) provided that (4.1) holds. Considering the

first-order approximation of the function U(t), in (1.6), U0(n/k) ≡ C(n/k)ξ, we then get

(n
k

)ξ
D

(α,θ1,θ2,ηq ,q)
n,k (ξ)

p−→
n→∞

αηqξ
αηq
(χq
C

)
dα,θ1,θ2(−ξ),

i.e. for any r ∈ N

(n
k

)rξ (
D

(α,θ1,θ2,ηq ,q)
n,k (ξ)

)r p−→
n→∞

(
αηqξ

αηq
(χq
C

))r
drα,θ1,θ2(−ξ). (6.1)

To get rid of the unknown ξ in
(
D

(α,θ1,θ2,ηq ,q)
n,k (ξ)

)r
it is enough to consider that

(n
k

)ξ
D

(rα,θ1,θ2,ηq ,q)
n,k (ξ)

p−→
n→∞

rαηqξ
rαηq

(χq
C

)
drα,θ1,θ2(−ξ). (6.2)

The quotient between (6.1) and (6.2), enables us to say that

(n
k

)ξ(r−1)

(
D

(α,θ1,θ2,ηq ,q)
n,k (ξ)

)r
D

(rα,θ1,θ2,ηq ,q)
n,k (ξ)

p−→
n→∞

(αηq (χq/C))r−1

r

(dα,θ1,θ2)r (−ξ)
drα,θ1,θ2(−ξ)

.

If we choose r = 2, as suggested in Caeiro and Gomes (2006), we obtain

(n
k

)ξ (D(α,θ1,θ2,ηq ,q)
n,k (ξ)

)2

D
(2α,θ1,θ2,ηq ,q)
n,k (ξ)

p−→
n→∞

αηq
2

(χq
C

) d2
α,θ1,θ2

(−ξ)
d2α,θ1,θ2(−ξ)

.
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Since, in R1, βq = χq/C and ρq = −ξ with (βq, ρq) defined in (1.11), the class of consistent

r.v.’s, that converge in probability towards βq for any α > 0, ηq ∈ R, θ1, θ2 6= θ2, 0 ≤ q < 1 is

given by

β̂
(α,θ1,θ2,ηq ,q)
n,k (ρq) :=

2d2α,θ1,θ2(ρq)

αηqd2
α,θ1,θ2

(ρq)

(n
k

)−ρq (D(α,θ1,θ2,ηq ,q)
n,k (ξ)

)2

D
(2α,θ1,θ2,ηq ,q)
n,k (ξ)

. (6.3)

(ii) In the region ξ + ρ0 > 0, where 1/U0(t) = o(A0(t)), as t → ∞, or more generally in

the region R2, the second term of the right-hand side of (3.12) is the dominant one, i.e.

D
(α,θ1,θ2,ηq ,q)
n,k (ξ)/A0(n/k) converges in probability to αηqξ

αηqdα,θ1,θ2(ρ0)/ξ provided that (4.1)

holds. Since we can choose A0(t) = ξβ0t
ρ0 ,(n

k

)−ρ0
D

(α,θ1,θ2,ηq ,q)
n,k (ξ)

p−→
n→∞

β0αηqξ
αηqdα,θ1,θ2(ρ0),

i.e., with r ∈ N (n
k

)−rρ (
D

(α,θ1,θ2,ηq ,q)
n,k (ξ)

)r p−→
n→∞

(βαηqξ
αηq)r (dα,θ1,θ2)r (ρ). (6.4)

Using the same type of arguments, we can get rid of the unknown ξ in
(
D

(α,θ1,θ2,ηq ,q)
n,k (ξ)

)r
if

we consider that (n
k

)−ρ0
D

(rα,θ1,θ2,ηq ,q)
n,k (ξ)

p−→
n→∞

β0rαηqξ
rαηqdrα,θ1,θ2(ρ0). (6.5)

The quotient between (6.4) and (6.5) enables us to say that

(n
k

)−ρ(r−1)

(
D

(α,θ1,θ2,ηq ,q)
n,k (ξ)

)r
D

(rα,θ1,θ2,ηq ,q)
n,k (ξ)

p−→
n→∞

(βαηq)
r−1

r

(dα,θ1,θ2)r (ρ)

drα,θ1,θ2(ρ)
.

Choosing again r = 2, as in Caeiro and Gomes (2006), and with βq = β0 and ρq = ρ0, (βq, ρq)

given in (1.11), we get (6.3), i.e. a class of r.v.’s converging in probability to βq for α > 0,

ηq ∈ R, θ1 6= θ2 and 0 ≤ q < 1.

(iii) In the region R3, A0(t) and 1/U0(t) are of the same order, i.e. the dominant terms of the

right-hand side of (3.12) are the second and the last. If we assume that (4.1) holds,

D
(α,θ1,θ2,ηq ,q)
n,k (ξ)

A0(n/k)

p−→
n→∞

αηqξ
αηq

ξ

[
dα,θ1,θ2(ρ0) +

χq
β0C

dα,θ1,θ2(−ξ)
]
.
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Since A0(t) = ξβ0t
ρ0 we then get(n

k

)−ρ0
D

(α,θ1,θ2,ηq ,q)
n,k (ξ)

p−→
n→∞

αβ0ηqξ
αηq

(
dα,θ1,θ2(ρ0) +

χq
β0C

dα,θ1,θ2(−ξ)
)
.

But in R3, ρ0 = −ξ, thence(n
k

)−ρ0
D

(α,θ1,θ2,ηq ,q)
n,k (ξ)

p−→
n→∞

αηqξ
αηq
(
β0 +

χq
C

)
dα,θ1,θ2(ρ0).

Considering the same type of procedures used in cases (i) and (ii) and with r = 2 we are led to

(n
k

)−ρ0 (D(α,θ1,θ2,ηq ,q)
n,k (ξ)

)2

D
(2α,θ1,θ2,ηq ,q)
n,k (ξ)

p−→
n→∞

αηq
2

(
β0 +

χq
C

) d2
α,θ1,θ2

(ρ0)

d2α,θ1,θ2(ρ0)
,

and with βq = β0 + χq/C, from (1.11), we get (6.3) and consistency follows.

The results presented in cases (i), (ii) and (iii) still hold true if we replace ρq by any consistent

estimator of ρq, ρ̂
(q), such that (ρ̂(q) − ρq) ln(n/k) = op(1).

Proof. [Theorem 4.2]. (i) In the region R1, A0(t) = o(1/U0(t)), as t → ∞, the

third and last term of the right-hand side of (3.12) is the dominant one, and the r.v.’s

D
(α,θ1,θ2,τq ,q)
n,k (ξ)/(1/U0(n/k)) converge in probability to α ηqξ

αηqχq dα,θ1,θ2(−ξ) provided that

(4.1) holds, i.e. if
√
k/U0(n/k)→∞, as n→∞ (see Remark 4.1). Moreover, we get

D
(α,θ1,θ2,ηq,q)

n,k (ξ)

1/U0(n/k)

d
= α ηqξ

αηqχq dα,θ1,θ2(−ξ)
(

1 + 1
αχqdα,θ1,θ2 (−ξ)

√
k
W

(α,θ1,θ2)
k U0(n/k)

+
dα,θ1,θ2 (ρ0)

ξχqdα,θ1,θ2 (−ξ)A0(n/k)U0(n/k)(1 + op(1)) +
χq yα,θ1,θ2,ηq (ξ)

dα,θ1,θ2 (−ξ)U0(n/k)(1 + op(1))

)
.

Consequently,

(
D

(α,θ1,θ2,ηq,q)

n,k (ξ)
)2

1/U2
0 (n/k)

d
= (α ηq)

2 ξ2αηqχ2
q d

2
α,θ1,θ2(−ξ)

(
1 + 2

αχqdα,θ1,θ2 (−ξ)
√
k
W

(α,θ1,θ2)
k U0(n/k)

+ 2
dα,θ1,θ2 (ρ0)

ξχqdα,θ1,θ2 (−ξ)A0(n/k)U0(n/k)(1 + op(1)) +
2χq yα,θ1,θ2,ηq (ξ)

dα,θ1,θ2 (−ξ)U0(n/k)(1 + op(1))

)
, (6.6)

and since 1/(1 + x) = 1− x+ o(x), as x→ 0, we get

1/U0(n/k)

D
(2α,θ1,θ2,ηq,q)

n,k (ξ)

d
= 1

2α ηqξ
2αηqχq d2α,θ1,θ2 (−ξ)

(
1− 1

2αχqd2α,θ1,θ2 (−ξ)
√
k
W

(2α,θ1,θ2)
k U0(n/k)

− d2α,θ1,θ2 (ρ0)

ξχqd2α,θ1,θ2 (−ξ)A0(n/k)U0(n/k)(1 + op(1))− χq y2α,θ1,θ2,ηq (ξ)

d2α,θ1,θ2 (−ξ)U0(n/k)(1 + op(1))

)
. (6.7)
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The quotient between (6.6) and (6.7) enables us to say that

(
D

(α,θ1,θ2,ηq,q)

n,k (ξ)
)2

D
(2α,θ1,θ2,ηq,q)

n,k (ξ)/U0(n/k)

d
=

α ηqχq
2

d2α,θ1,θ2
(−ξ)

d2α,θ1,θ2 (−ξ)

(
1 + 2

αχqdα,θ1,θ2 (−ξ)
√
k
W

(α,θ1,θ2)
k U0(n/k)

+ 2
dα,θ1,θ2 (ρ0)

ξχqdα,θ1,θ2 (−ξ)A0(n/k)U0(n/k)(1 + op(1)) +
2χq yα,θ1,θ2,ηq (ξ)

dα,θ1,θ2 (−ξ)U0(n/k)(1 + op(1))

)
×
(

1− 1
2αχqd2α,θ1,θ2 (−ξ)

√
k
W

(2α,θ1,θ2)
k U0(n/k)

− d2α,θ1,θ2 (ρ0)

ξχqd2α,θ1,θ2 (−ξ)A0(n/k)U0(n/k)(1 + op(1))− χq y2α,θ1,θ2,ηq (ξ)

d2α,θ1,θ2 (−ξ)U0(n/k)(1 + op(1))

)
.

Since, in R1, βq = χq/C, ρq = −ξ with (βq, ρq) defined in (1.11), and we can write

β̂
(α,θ1,θ2,ηq ,q)
n,k (ρq) :=

2d2α,θ1,θ2(ρq)

αηqd2
α,θ1,θ2

(ρq)

(n
k

)−ρq (D(α,θ1,θ2,ηq ,q)
n,k (ξ)

)2

D
(2α,θ1,θ2,ηq ,q)
n,k (ξ)

= βq

(
1 +

2 W
(α,θ1,θ2)
k U0(n/k)

αχqdα,θ1,θ2 (−ξ)
√
k
− W

(2α,θ1,θ2)
k U0(n/k)

2αχqd2α,θ1,θ2 (−ξ)
√
k

+
χqy

(α,θ1,θ2,ηq)(ξ,−ξ)
U0(n/k) (1 + op(1)) + z(α,θ1,θ2)(ρ0,−ξ)

ξχq
A0(n/k)U0(n/k)(1 + op(1))

)
,

with y(α,θ1,θ2,ηq)(ξ,−ξ) and z(α,θ1,θ2)(ρ,−ξ) defined in (4.4) and (4.5), respectively.

If we consider sequences of positive intermediate integers k = kn such that kn = o(n),
√
k/U0(n/k) → ∞,

√
kA0(n/k) → λ and

√
k/U2

0 (n/k) → λU , as n → ∞, and noticing that

with χq 6= 0, given in (1.9), A0(t)U0(t) = o(1/U0(t)), in R11, 1/U0(t) = o(A0(t)U0(t)), in R13

and A0(t)U0(t) = O(1/U0(t)), in R12, the result holds.

(ii) In the region ξ+ρ0 > 0, where 1/U0(t) = o(A0(t)), as t→∞, or more generally in the region

R2, the second term of the right-hand side of (3.12) is the dominant one. In R2, Aq(t) = A0(t),

so condition (4.1) can be rewritten as
√
kA0(n/k)→∞, as n→∞ and if we assume that this

condition holds,

D
(α,θ1,θ2,ηq,q)

n,k (ξ)

A0(n/k)

d
= αηqξ

αηq−1dα,θ1,θ2(ρ0)

(
1 +

ξW
(α,θ1,θ2)
k

αdα,θ1,θ2 (ρ0)
√
kA(n/k)

+
uα,θ1,θ2,ηq (ρ0)

dα,θ1,θ2 (ρ0) A0(n/k)(1 + op(1)) +
vα,θ1,θ2 (ρ0,ρ′0)

dα,θ1,θ2 (ρ0) B0(n/k)(1 + op(1))

+
ξχqdα,θ1,θ2 (−ξ)

dα,θ1,θ2 (ρ0)A0(n/k)U0(n/k)(1 + op(1))

)
.
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Therefore,

(
D

(α,θ1,θ2,ηq,q)

n,k (ξ)
)2

A2
0(n/k)

d
= (αηq)

2ξ2αηq−2d2
α,θ1,θ2(ρ0)

(
1 +

2ξW
(α,θ1,θ2)
k

αdα,θ1,θ2 (ρ0)
√
kA(n/k)

+
2uα,θ1,θ2,ηq (ρ0)

dα,θ1,θ2 (ρ0) A0(n/k)(1 + op(1)) +
2vα,θ1,θ2 (ρ0,ρ′0)

dα,θ1,θ2 (ρ0) B0(n/k)(1 + op(1))

+
2ξχqdα,θ1,θ2 (−ξ)

dα,θ1,θ2 (ρ0)A0(n/k)U0(n/k)(1 + op(1))

)
, (6.8)

and given that 1/(1 + x) = 1− x+ o(x), as x→ 0, we obtain

A0(n/k)

D
(2α,θ1,θ2,ηq,q)

n,k (ξ)

d
= 1

2αηqξ
2αηq−1d2α,θ1,θ2 (ρ0)

(
1− ξW

(2α,θ1,θ2)
k

2αd2α,θ1,θ2 (ρ0)
√
kA(n/k)

− u2α,θ1,θ2,ηq (ρ0)

d2α,θ1,θ2 (ρ0) A0(n/k)(1 + op(1))− v2α,θ1,θ2 (ρ0,ρ′0)

d2α,θ1,θ2 (ρ0) B0(n/k)(1 + op(1))

− ξχqd2α,θ1,θ2 (−ξ)
d2α,θ1,θ2 (ρ0)A0(n/k)U0(n/k)(1 + op(1))

)
. (6.9)

The quotient between (6.8) and (6.9) enables us to say that

(
D

(α,θ1,θ2,ηq,q)

n,k (ξ)
)2

D
(2α,θ1,θ2,ηq,q)

n,k (ξ)A0(n/k)

d
=

αηq
2ξ

d2α,θ1,θ2
(ρ0)

d2α,θ1,θ2 (ρ0)

(
1 +

2ξW
(α,θ1,θ2)
k

αdα,θ1,θ2 (ρ0)
√
kA(n/k)

+
2uα,θ1,θ2,ηq (ρ0)

dα,θ1,θ2 (ρ0) A0(n/k)(1 + op(1)) +
2vα,θ1,θ2 (ρ0,ρ′0)

dα,θ1,θ2 (ρ0) B0(n/k)(1 + op(1))

+
2ξχqdα,θ1,θ2 (−ξ)

dα,θ1,θ2 (ρ0)A0(n/k)U0(n/k)(1 + op(1))

)
×
(

1− ξW
(2α,θ1,θ2)
k

2αd2α,θ1,θ2 (ρ0)
√
kA(n/k)

− u2α,θ1,θ2,ηq (ρ0)

d2α,θ1,θ2 (ρ0) A0(n/k)(1 + op(1))− v2α,θ1,θ2 (ρ0,ρ′0)

d2α,θ1,θ2 (ρ0) B0(n/k)(1 + op(1))

− ξχqd2α,θ1,θ2 (−ξ)
d2α,θ1,θ2 (ρ0)A0(n/k)U0(n/k)(1 + op(1))

)
.

But, in R2, βq = β0, ρq = ρ0 with (βq, ρq) defined in (1.11), and we get

β̂
(α,θ1,θ2,ηq ,q)
n,k (ρq) :=

2d2α,θ1,θ2(ρq)

αηqd2
α,θ1,θ2

(ρq)

(n
k

)−ρq (D(α,θ1,θ2,ηq ,q)
n,k (ξ)

)2

D
(2α,θ1,θ2,ηq ,q)
n,k (ξ)

= βq

(
1 +

2ξW
(α,θ1,θ2)
k

αdα,θ1,θ2 (ρ0)
√
kA0(n/k)

− ξW
(2α,θ1,θ2)
k

2αd2α,θ1,θ2 (ρ0)
√
kA0(n/k)

+ u(α,θ1,θ2,ηq)(ρ0)A0(n/k)(1 + op(1)) + v(α,θ1,θ2)(ρ0, ρ
′
0)B0(n/k)(1 + op(1))

+
ξχqz(α,θ1,θ2)(−ξ,ρ0)
A0(n/k)U0(n/k) (1 + op(1))

)
,

with z(α,θ1,θ2)(ρ,−ξ), u(α,θ1,θ2,ηq)(ρ) and v(α,θ1,θ2)(ρ, ρ′) defined in (4.5), (4.6) and (4.7), respec-

tively.
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Considering sequences of positive intermediate integers k = kn such that kn = o(n),
√
k/U0(n/k)→∞, and if we further assume that

√
kA2

0(n/k)→ λA,
√
kA0(n/k)B0(n/k)→ λB

and
√
k/U0(n/k) → λ′, as n → ∞, then, with χq 6= 0 given in (1.9) and A0(t) =

O(B0(t)), A0(t) = o(1/(A0(t)U0(t))), in R21, 1/(A0(t)U0(t)) = o(A0(t)), in R23 and A0(t) =

O(1/(A0(t)U0(t)), in R22, the result follows.

(iii) In the region R3, A0(t) and 1/U0(t) are of the same order, i.e. the dominant terms of the

right-hand side of (3.12) are the second and the third. In R3, Aq(t) = A0(t) + ξχq/U0(t), so

condition (4.1) can be rewritten as
√
kA0(n/k) → ∞, as n → ∞ or

√
k/U0(n/k) → ∞, as

n→∞. If we assume that the first condition holds with limn→∞ 1/(A0(n/k)U0(n/k)) := λ̃ =

1
ξβ0C

, then

D
(α,θ1,θ2,ηq,q)

n,k (ξ)

A0(n/k)

d
= αηqξ

αηq−1
(

1 + ξλ̃χq

)
dα,θ1,θ2(ρ0)

(
1 +

ξW
(α,θ1,θ2)
k

αdα,θ1,θ2 (ρ0)(1+ξλ̃χq)
√
kA(n/k)

+
uα,θ1,θ2,ηq (ρ0)

(1+ξλ̃χq)dα,θ1,θ2 (ρ0)
A0(n/k)(1 + op(1)) +

vα,θ1,θ2 (ρ0,ρ′0)

(1+ξλ̃χq)dα,θ1,θ2 (ρ0)
B0(n/k)(1 + op(1))

+
ξχq wα,θ1,θ2,ηq (ξ,ρ0)

(1+ξλ̃χq)dα,θ1,θ2 (ρ0)U0(n/k)
(1 + op(1)) +

ξχ2
qyα,θ1,θ2,ηq (ξ)

(1+ξλ̃χq)dα,θ1,θ2 (ρ0)A0(n/k)U2
0 (n/k)

)
.

Considering the same type of procedures used in cases (i) and (ii) we are led to

(
D

(α,θ1,θ2,ηq,q)

n,k (ξ)
)2

D
(2α,θ1,θ2,ηq,q)

n,k (ξ)A0(n/k)

d
=

αηq
2ξ

(
1 + ξλ̃χq

)
d2α,θ1,θ2

(ρ0)

d2α,θ1,θ2 (ρ0)

(
1 +

2ξW
(α,θ1,θ2)
k

αdα,θ1,θ2 (ρ0)(1ξλ̃χq)
√
kA(n/k)

+
2uα,θ1,θ2,ηq (ρ0)

(1+ξλ̃χq)dα,θ1,θ2 (ρ0)
A0(n/k)(1 + op(1)) +

2vα,θ1,θ2 (ρ0,ρ′0)

(1+ξλ̃χq)dα,θ1,θ2 (ρ0)
B0(n/k)(1 + op(1))

+
2ξχq wα,θ1,θ2,ηq (ξ,ρ0)

(1+ξλ̃χq)dα,θ1,θ2 (ρ0)U0(n/k)
(1 + op(1)) +

2ξχ2
qyα,θ1,θ2,ηq (ξ)

(1+ξλ̃χq)dα,θ1,θ2 (ρ0)A0(n/k)U2
0 (n/k)

)
×
(

1− ξW
(2α,θ1,θ2)
k

2αd2α,θ1,θ2 (ρ0)(1+ξλ̃χq)
√
kA(n/k)

− u2α,θ1,θ2,ηq (ρ0)

(1+ξλ̃χq)d2α,θ1,θ2 (ρ0)
A0(n/k)(1 + op(1))− v2α,θ1,θ2 (ρ0,ρ′0)

(1+ξλ̃χq)d2α,θ1,θ2 (ρ0)
B0(n/k)(1 + op(1))

− ξχq w2α,θ1,θ2,ηq
(ξ,ρ0)

(1+ξλ̃χq)d2α,θ1,θ2 (ρ0)U0(n/k)
(1 + op(1))− ξχ2

qy2α,θ1,θ2,ηq (ξ)

(1+ξλ̃χq)d2α,θ1,θ2 (ρ0)A0(n/k)U2
0 (n/k)

)
.
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In R3, we have βq = β0 +
χq
C and ρq = ρ0 with (βq, ρq) defined in (1.11), therefore,

β̂
(α,θ1,θ2,ηq ,q)
n,k (ρq) :=

2d2α,θ1,θ2(ρq)

αηqd2
α,θ1,θ2

(ρq)

(n
k

)−ρq (D(α,θ1,θ2,ηq ,q)
n,k (ξ)

)2

D
(2α,θ1,θ2,ηq ,q)
n,k (ξ)

= βq

(
1 +

2ξW
(α,θ1,θ2)
k

α(1+ξλ̃χq)dα,θ1,θ2 (ρ0)
√
kA0(n/k)

− ξW
(2α,θ1,θ2)
k

2α(1+ξλ̃χq)d2α,θ1,θ2 (ρ0)
√
kA0(n/k)

+ u(α,θ1,θ2,ηq)(ρ0)

1+ξλ̃χq
A0(n/k)(1 + op(1)) +

v(α,θ1,θ2)(ρ0,ρ′0)

1+ξλ̃χq
B0(n/k)(1 + op(1))

+
ξχqw

(α,θ1,θ2,ηq)(ξ,ρ0)

(1+ξλ̃χq)U0(n/k)
(1 + op(1)) +

ξχ2
qy

(α,θ1,θ2,ηq)(ξ,ρ0)

(1+ξλ̃χq)A0(n/k)U2
0 (n/k)

(1 + op(1))

)
,

with y(α,θ1,θ2,ηq)(ξ, ρ), z(α,θ1,θ2)(ρ,−ξ), u(α,θ1,θ2,ηq)(ρ) and v(α,θ1,θ2)(ρ, ρ′) defined in (4.4), (4.5),

(4.6) and (4.7), respectively.

The proof of the theorem follows for sequences of positive intermediate integers k = kn

such that kn = o(n),
√
kA0(n/k) → ∞,

√
kA2

0(n/k)→ λA ,
√
kA0(n/k)B0(n/k) → λB ,

√
kA0(n/k)/U0(n/k) → λAU and

√
k/U2

0 (n/k) → λU , as n→∞, and taking into account

that βq/(1 + ξλ̃χq) = β0.

The results presented in cases (i), (ii) and (iii) still hold true if we replace ρq by any consistent

estimator of ρq, ρ̂
(q), such that (ρ̂(q) − ρq) ln(n/k) = op(1).

Remark 6.1. The replacement of ρ by ρ̂(q) in the scale factor 2d2α,θ1,θ2(ρq)/
(
αηqd

2
α,θ1,θ2

(ρ)
)

places no problem due to a continuity argument, provided that ρ̂(q) is consistent for

the estimation of ρq. However, the replacement of ρq by ρ̂(q) in (k/n)ρq requires that

(k/n)ρq / (k/n)ρ̂
(q) p−→

n→∞
1 and hence the need to impose the condition

(
ρ̂(q) − ρq

)
ln(n/k) =

op(1).

Appendix: The second and third-order frameworks for heavy-

tailed models under a non-null shift

As mentioned above, if we induce any arbitrary shift, s ∈ R\{0}, in the unshifted model X0,

with quantile function U0(t), the transformed r.v., Xs = X0 + s, has an associated quantile

function given by Us(t) = U0(t) + s. The second and third-order conditions in (1.4) and (1.5),
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respectively, can then be rewritten as

lim
t→∞

lnUs(tx)− lnUs(t)− ξ lnx

As(t)
= ψρs(x) :=

 xρs−1
ρs

, if ρs < 0,

lnx, if ρs = 0,
(6.10)

and

lim
t→∞

lnUs(tx)−lnUs(t)−ξ lnx
As(t)

− ψρs(x)

Bs(t)
=

 xρs+ρ
′
s−1

ρs+ρ′s
, if min(ρs, ρ

′
s) < 0,

lnx, if ρs = ρ′s = 0,
(6.11)

and hold for all x > 0, with |As| ∈ RVρs , |Bs| ∈ RVρ′s , ρs, ρ
′
s < 0. As a replacement of Lemma

3.1, if we assume that U0 ∈ RVξ satisfies the second-order condition (1.4) with ρ = ρ0 and

A = A0. Then Us(t) := U0(t) + s is such that Us ∈ RVξ and (6.10) holds with

As(t) :=


−ξs/U0(t), if ξ + ρ0 < 0 and s 6= 0,

A0(t)− ξs/U0(t), if ξ + ρ0 = 0 and s 6= 0,

A0(t), if ξ + ρ0 > 0 or s = 0,

(6.12)

and (βs, ρs) given in (1.7).

Consequently, the introduction of a shift in the model underlying the data can possibly

change the shape second-order parameter ρ = ρs, in (1.4), which is indeed equal to −ξ whenever

we induce a non-null shift in any unshifted model with ξ + ρ0 < 0, as, for instance, X ≡ X0 _

Fréchet(ξ = 0.25), for which ρ0 = −1. Then, and for Xs = X0 + s, s 6= 0, the second-order

parameter ρ, in (1.4), becomes −ξ. In the sequel, and for a reasonably large set H of heavy-

tailed models, H ⊂ DM(Gξ>0), we shall analyse the impact of a shift s 6= 0 not only on (β, ρ)

and A(·), but, more generally, in the vector of unknown parameters (β, ρ, β′, ρ′), with (β′, ρ′)

the scale and shape third-order parameters, proceeding to a characterisation of (βs, ρs, β
′
s, ρ
′
s)

and the functionals Us(t), As(t) and Bs(t), comparatively with the functionals U0(t), A0(t) and

B0(t) corresponding to an unshifted model.

A subclasse of Hall-Welsh class of models

The so-called Hall-Welsh class of models was first introduced in Hall (1982), later used in Hall

and Welsh (1985) with a restriction E1 6= 0, and it is now used under a third-order framework.

We thus assume to be working in a class H of heavy-tailed models, such that

F (x) ≡ F 0(x) = (x/C)−1/ξ
{

1 + E1 (x/C)ρ0/ξ + E2 (x/C)2ρ0/ξ + o
(
x2ρ0/ξ

)}
,
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as x → ∞, where ξ > 0, ρ0 < 0, C > 0 and E1, E2 6= 0. Equivalently, we can say that, as

t→∞,

U(t) ≡ U0(t) = Ctξ
{

1 +D1t
ρ0 +D2t

2ρ0 + o(t2ρ0)
}
, (6.13)

where D1 = ξE1 and D2 = ξ
(
E2 + (2ρ0 + ξ − 1)/2E2

1

)
. Then, the third-order condition in

(1.5) holds, with ρ = ρ′ = ρ0, A0(t) = ρ0D1t
ρ0 and B0(t) = (2D2/D1 −D1) tρ0 . For this class

of models and choosing the parameterizations A0(t) := ξβ0t
ρ0 and B0(t) := β′0t

ρ0 , we have

D1 = ξβ0/ρ0 and D2 = D1(D1 + β′0)/2.

Remark 6.2. The log-gamma model (ρ = 0 in (1.4)) is out of the class of models in (6.13). The

unit Pareto model, with d.f. F (z) = 1 − z−1/ξ, z ≥ 1, and quantile function U(t) = tξ, t ≥ 1,

is also out of this class of models. Indeed, we get U(tx)/U(t) = xξ for all x ≥ 1, i.e. A(t) ≡ 0

in (1.4) meaning that we may assume the fastest convergence attached to ρ = −∞.

If we induce a deterministic shift, s ∈ R\{0}, in the underlying model, the associated

reciprocal quantile function, Us(t), is then given by,

Us(t) = Ctξ
{

1 +D1t
ρ0 +D2t

2ρ0 + sC−1t−ξ + o(t2ρ0)
}
, as t→∞.

The parameter (β = βs, ρ = ρs), in (1.6), is then the one given in (1.7). The function As(t)

depends thus on the relationship between the first-order parameter ξ, and the second-order

parameter ρ0, just as provided in (6.12). The characterisation of Bs(t) in (6.11) is slightly more

complex, and it is presented, jointly with As(t), in Table 2.

Remark 6.3. The results presented in Table 2 enable us to fully characterise any model in the

aforementioned sub-class of Hall-Welsh’s class:

• For the Burr(ξ, ρ) model with d.f. F (x) = 1−
(
1 + x−ρ/ξ

)1/ρ
(x > 0, ξ > 0, ρ ≡ ρ0 < 0)

we have C = 1, D1 = ξ/ρ0 and D2 = D1(1 +D1)/2.

• For the Fréchet(ξ) model with d.f. F (x) = exp
(
−x−1/ξ

)
(x > 0, ξ > 0), we have ρ0 = −1,

C = 1, D1 = −ξ/2 and D2 = D1 (5/6 +D1) /2.

• For the generalised Pareto (GP)(ξ > 0) model with d.f. F (x) = 1 − (1 + ξx)−1/ξ,

(x > 0, ξ > 0), we have ρ0 = −ξ, C = 1/ξ, D1 = −1 and D2 = 0.
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Table 2: Characterisation of second, third-order parameters and functionals As and Bs for a model F

in the Hall-Welsh sub-class of models, in (6.13), additionally subject to a shift s 6= 0.

As(t) := ξβst
ρs Bs(t) := β′st

ρ′s

ρ0 < −2ξ − s
C t
−ξ

ξ + ρ0 < 0 ρ0 = −2ξ − ξs
C t
−ξ

(
2ξβ0C
ρ0s
− s

C

)
t−ξ

ρ0 > −2ξ −β0C
s tξ+ρ0

ξ + ρ0 = 0
(
ξβ0 + ρ0s

C

)
tρ0

β0C2(β′0−β0)+2(β0C−s)2
2C(β0C−s) tρ0

ρ0 < −ξ/2 − s
β0C

t−(ξ+ρ0)

ξ + ρ0 > 0 ρ0 = −ξ/2 ξβ0t
ρ0 ≡ A0(t)

(
β′0 + 2ρ0s

ξβ0C

)
tρ0

ρ0 > −ξ/2 β′0t
ρ0 ≡ B0(t)

• The Student’s-tν (ν > 0) distribution is

F (x) = F (x|ν) =
Γ((ν + 1)/2)

Γ(ν/2)
√
πν

∫ x

−∞

(
1 +

z2

ν

)−(ν+1)/2

dz, x ∈ R, ν > 0,

with ξ = 1/ν and ρ0 = −2/ν = −2ξ. In this case we have, C =
√
ν/cν , where cν =

(νB(ν/2, 1/2))1/ν , with B the complete Beta function, and D1 = −c2
ν(ν + 1)/(2(ν + 2)).

When ν = 1 we get the so called Cauchy d.f., F (x) = 1/2 − (arctan(x))/π, x ∈ R, with

ξ = 1 and ρ0 = −2. For the Cauchy distribution we have C = 1/π and D1 = −π2/3.

Remark 6.4. Just as mentioned in Remark 3.1, note that we can use in (6.10), (6.11) and

(6.12) the subscript q instead of the subscript s, whenever we think on such a shift as s = −χq.

Acknowledgement The authors are very grateful to the anonymous referees for their helpful

comments which lead to improvements of the paper.

References
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[16] Gomes, M.I., Fraga Alves, M.I. and Araújo Santos, P. (2008). PORT Hill and moment estimators

for heavy-tailed models. Commun. in Statist.—Simul. and Comput. 37, 1281–1306.

[17] Gomes, M.I., Figueiredo, F. and Neves, M.M. (2012). Adaptive estimation of heavy right tails:

resampling-based methods in action. Extremes 15, 463–489.

32



[18] Gomes, M.I., Henriques-Rodrigues, L., Fraga Alves, M.I. and Manjunath, B.G. (2013). Adaptive

PORT-MVRB estimation: an empirical comparison of two heuristic algorithms. J. Statist. Comput.

Simul. 83:6, 1129–1144.

[19] Haan, L. de (1984). Slow variation and characterization of domains of attraction. In Tiago de

Oliveira, ed., Statistical Extremes and Applications, 31-48, D. Reidel, Dordrecht, Holland.

[20] Hall, P. (1982). On estimating the endpoint of a distribution. Ann. Statist. 10, 556–568.

[21] Hall, P. and Welsh, A.W. (1985). Adaptive estimates of parameters of regular variation. Annals of

Statistics 13, 331–341.

[22] Henriques-Rodrigues, L. and Gomes, M.I. (2009). High quantile estimation and the PORT method-

ology. Revstat 7:3, 245–264.

[23] Henriques-Rodrigues, L., Gomes, M.I., Fraga Alves, M.I. and Neves, C. (2014). PORT-estimation

of a shape second-order parameter. Revstat 12:3, in press.
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