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Abstract. Starting from the Beta(2,2) model, connected to the Verhulst logistic
parabola, several extensions are discussed, and connections to extremal models are
revealed.
Aside from the classical GEV (General Extreme Value Model) from the iid case,
extreme value models in randomly stopped extremes schemes are discussed; in this
context, the classical logistic Verhulst model is a max-geo-stable model, i.e. geomet-
ric thinning of the observations curbs down growth to sustainable patterns. The
general differential models presented are a unified approach to population dynamics
growth, with factors of the form [− ln(1−N(t))]P−1 and the linearization [N(t)]p−1

modeling two very different growth patterns, and factors of the form [− ln N(t)]Q−1

and the linearization [1−N(t)]q−1 leading to very different ambiental resources con-
trol of the growth behavior.
Keywords: Verhults logistic model, Beta and BeTaBoOp models, population dy-
namics, extreme value models, geometric thinning, randomly stopped maxima with
geometric subordinator.

1 Introduction

Let N(t) denote the size of some population at time t. Verhults [16], [17], [18]
imposed some natural regularity conditions on N(t), namely that d

dtN(t) =
∞∑
k=0

Ak[N(t)]k, with A0 = 0 since nothing can stem out from an extinct

population, A1 > 0 a “growing” parameter, A2 < 0 a retroaction parameter
controlling sustainable growth tied to available resources, see also Lotka [9].

The second order approximation d
dtN(t) = A1N(t) + A2[N(t)]2 can be

rewritten
d
dt
N(t) = r N(t)

[
1− N(t)

K

]
(1)



where r > 0 is frequently interpreted as a Malthusian instantaneous growth
rate parameter when modeling natural breeding populations, and K > 0 as
the equilibrium limit size of the population.

The general form of the solution of the (1) differential equation approx-

imation is the family of logistic functions N(t) =
KN0

N0 + (K −N0) e−rt
(where N0 is the population size at time t = 0), and this is the reason why
in the context of population dynamics r x (1− x) is frequently referred to as
“the logistic parabola”.

Due to the seasonal reproduction and time life of many natural popula-
tions, the differential equation (1) is often discretized, first taking r∗ such that
N(t+ 1)−N(t) = r∗N(t)

[
1− N(t)

K

]
and then α = r∗ + 1, x(t) = r∗N(t)

r∗+1 , to
obtain x(t+ 1) = αx(t)[1− x(t)], and then the asociated difference equation

xn+1 = αxn [1− xn], (2)

where it is convenient to deal with the assumption xk ∈ [0, 1], k = 1, 2, . . .
The equilibrium xn+1 = xn leads to a simple second order algebraic equation
with positive root 1− 1

α , and to a certain extent it is surprising that anyone
would care to investigate its numerical solution using the fixed point method,
which indeed brings in many pathologies when a steep curve — i.e., for some
values of the iterates |α (1 − 2xk)| > 1 — is approximated by an horizontal
straight line. This numerical investigation, apparently devoid of interest, has
however been at the root of many theoretical advances (namely Feigenbaum
bifurcations and ultimate chaotic behavior), and a posteriori led to many
interesting breakthroughs in the understanding of population dynamics.

Observe also that (2) may be rewritten xn+1 = α
6 6xn [1− xn], and that

f(x) = 6x (1 − x) I(0,1)(x) is the Beta(2, 2) probability density function.
Extensions of the Verhults model using difference equations similar to (2),
but where the right hand side is tied to a more general Beta(p, q) probability
density function have been investigated in Aleixo et al. [1] and in Rocha et
al. [13].

Herein we consider further extensions of population dynamics first dis-
cussed in Pestana et al. [10], Brilhante et al. [5] and in Brilhante et al. [3],
whose inspiration has been to remark that 1−x is the linear truncation of the
series expansion of − ln x, as well as x is the linear truncation of the series
expansion of − ln(1− x).

In Section 2, we describe the BeTaBoOp(p, q, P,Q), p, q, P,Q > 0 family
of probability density functions, with special focus on subfamilies for which
one at least of those shape parameters is 1.

In section 3, some points tying population dynamics and statistical ex-
treme value models are discussed, namely discussing the connection of the
instantaneous growing factors xp−1 and [− ln(1− x)]P−1 to models for min-
ima, and the retroaction control factors (1− x)q−1 and [− ln x]Q−1 to mod-
eling population growth using maxima extreme value models — either in the



classical extreme value setting, either in the geo-stable setting, where the
geometric thinning curbs down growth to sustainable patterns.

2 The Xp,q,P,Q _ BeTaBoOp(p, q, P, Q) models,
p, q, P, Q > 0

Let {U1, U2, . . . , UQ} be independent and identically distributed (iid) stan-

dard uniform random variables, V =
Q∏
k=1

U
1
p

k , p > 0 the product of iid

Beta(p, 1) random variables. As − ln V _ Gamma(Q, 1
p ), the probability

density function (pdf) of V is fV (x) = pQ

Γ (Q) x
p−1(− ln x)Q−1I(0,1)(x).

Brilhante et al. [5] discussed the more general Betinha(p,Q) family of
random variables {Xp,Q}, p,Q > 0, with pdf

fXp,Q(x) =
pQ

Γ (Q)
xp−1(− ln x)Q−1I(0,1)(x), p,Q > 0

that can be considered an extension of the Beta(p, q), p, q > 0 family, since

1− x is the linearization of the MacLaurin expansion − ln x =
∞∑
k=1

(1− x)k

k

to derive population growth models that do not comply with the sustainable
equilibrium exhibited by the Verhulst logistic growth model.

On the other hand, if Xq,P _ Betinha(q, P ), the pdf of 1−Xq,P is

f1−Xq,P (x) =
qP

Γ (P )
(1− x)q−1(− ln(1− x))P−1I(0,1)(x), q, P > 0,

and the family of such random variables also extends the Beta(p, q) family
in the sense that x is the linearization of − ln(1− x).

Having in mind Hölder’s inequality, it follows that

xp−1(1− x)q−1[− ln(1− x)]P−1(− ln x)Q−1 ∈ L1
(0,1), p, q, P,Q > 0,

and hence

fXp,q,P,Q(x) =
xp−1(1− x)q−1[− ln(1− x)]P−1(− ln x)Q−1I(0,1)(x)∫ 1

0

xp−1(1− x)q−1[− ln(1− x)]P−1(− ln x)Q−1dx
(3)

is a pdf for all p, q, P,Q > 0. Obviously, 1 − Xp,q,P,Q = Xq,p,Q,P . For
simplicity, in what follows we shall use the lighter notation fp,q,P,Q instead
of fXp,q,P,Q for the density of Xp,q,P,Q.

Brilhante et al. [3] used the notation Xp,q,P,Q _ BeTaBoOp(p, q, P,Q)
for the random variable with pdf (3) — obviously the Beta(p, q), p, q > 0



family of random variables is the subfamily BeTaBoOp(p, q, 1, 1), and the
formerly introduced Betinha(p,Q), p,Q > 0 is in this more general setting
the BeTaBoOp(p, 1, 1, Q) family. The cases for which some of the shape
parameters are 1 and the other parameters are 2 are particularly relevant in
population dynamics. In the present paper, we shall discuss in more depth
Xp,1,1,Q and X1,q,P,1, and in particular X2,1,1,2 and X1,2,2,1.

Some of the 15 subfamilies when one or more of the 4 shape parameters
p, q, P,Q are 1 have important applications in modeling; below we enumerate
the most relevant cases, giving interpretations, for integer parameters, in
terms of products of powers of independent Uk _ Uniform(0, 1) random
variables.

1. X1,1,1,1 = U _ Uniform(0, 1); f1,1,1,1(x) = I(0,1)(x).

2. Xp,1,1,1 = U
1
p _ Beta(p, 1); fp,1,1,1(x) = p xp−1I(0,1)(x).

3. X1,q,1,1 = 1− U
1
q _ Beta(1, q); f1,q,1,1(x) = q (1− x)q−1I(0,1)(x).

4. X1,1,P,1, that for P ∈ N is 1 minus the product of P iid standard uniform
random variables,

X1,1,P,1 = 1−
P∏
k=1

Uk, Uk _ Uniform(0, 1), independent.

More generally, for all P > 0, f1,1,P,1(x) =
(− ln(1− x))P−1

Γ (P )
I(0,1)(x),

where Γ (P ) =
∫ ∞

0

xP−1e−xdx is Euler’s gamma function.

5. X1,1,1,Q, that for Q ∈ N is the product of P iid standard uniform random
variables,

X1,1,1,Q =
Q∏
k=1

Uk, Uk _ Uniform(0, 1), independent;

alternatively, X1,1,1,Q may be described in the following hierarchi-

cal construction: denote Y1
d=X1,1,1,1 _ Uniform(0, 1), Y2 _

Uniform(0, Y1), Y3 _ Uniform(0, Y2), . . . , YQ _ Uniform(0, YQ−1).

Then YQ
d=X1,1,1,Q _ BeTaBoOp(1, 1, 1, Q).

More generally, for all Q > 0, f1,1,1,Q(x) =
(− ln(x))Q−1

Γ (Q)
I(0,1)(x).

6. Xp,q,1,1 _ Beta(p, q), with fp,q,1,1(x) =
xp−1(1− x)q−1

B(p, q)
I(0,1)(x), where

as usual B(p, q) =
∫ 1

0

xp−1(1 − x)q−1dx =
Γ (p)Γ (q)
Γ (p+ q)

is Euler’s beta

function.



7. Xp,1,P,1, with pdf fp,1,P,1(x) = C
p,1,P,1 x

p−1 [− ln(1 − x)]P−1 I(0,1)(x),

where C
p,1,P,1 =

1∫ 1

0
xp−1 [− ln(1− x)]P−1dx

. For p ∈ N, C
p,1,P,1 =

1
p∑
k=1

(−1)k+1

(
p− 1
k − 1

)
Γ (P )
kP

.

8. X1,q,P,1, with pdf f1,q,P,1(x) =
qP

Γ (P )
(1−x)q−1 [− ln(1−x)]P−1 I(0,1)(x).

9. Xp,1,1,Q, with pdf fp,1,1,Q(x) =
pQ

Γ (Q)
xp−1 [− ln x]Q−1 I(0,1)(x), that for

Q ∈ N is the product of Q iid Beta(p, 1), i.e. standard uniform random
variables raised to the power 1

p , cf. also Arnold et al. [2].
10. . . .

(we postpone the discussion of the more complicated models 10-15 to the
full paper, since they are not discussed in this shorter version; observe also
that the only models for which an explicit evaluation of raw and of central
moments is straightforward are those with q = P = 1 or with P = Q = 1,
and so they are the natural candidates to model population dynamics).

3 Population Dynamics, BeTaBoOp(p, q, P, Q) and
extreme value models

Brilhante et al. [3] used differential equations

d
dt
N(t) = r N(t) [− ln[N(t)]]1+γ (4)

obtaining as solutions the three extreme value models for maxima, Weibull
when γ < 0, Gumbel when γ = 0 and Fréchet when γ > 0. The result for γ =
0 has also been presented in Tsoularis [14] and in Waliszewski and Konarski
[19], where as usual in population growth context the Gumbel distribution
is called Gompertz function. Brilhante et al. [3] have also shown that the
associated difference equations

xn+1 = αxn [− ln xn]1+γ ,

exhibit bifurcation and ultimate chaos, when numerical root finding using
the fixed point method, when α = α(γ) increases beyond values maintaining
the absolute value of the derivative limited by 1.

On the other hand, if instead of the right hand side N(t) [− ln[N(t)]]1+γ

associated to the BeTaBoOp(2, 1, 1, 2 + γ) we use as right hand side
[− ln[1−N(t)]]1+γ [1−N(t)], associated to the BeTaBoOp(1, 2 + γ, 2, 1),

d
dt
N(t) = r [− ln[1−N(t)]]1+γ [1−N(t)]



the solutions obtained are the corresponding extreme value models for minima
(and bifurcation and chaos when solving the associated difference equations
using the fixed point method). In view of the duality of extreme order statis-
tics for maxima and for minima, in the sequel we shall restrict our observation
to the case (4) and the associated BeTaBoOp(2, 1, 1, 2 + γ) model.

As − lnN(t) =
∞∑
k=1

[1−N(t)]k

k
> 1 − N(t), for the same value of the

malthusian instantaneous growth parameter r we have r N(t) [1 − N(t)] <
rN(t) (− ln[N(t))], and hence while (1) models sustainable growth in view
of the available resources, (4) models extreme value, arguably destructive
unsustained growth — for instance cell growth in tumours.

The connection to extreme value theory suggests further observations:
Assume that U1, U2, U3, U4 are independent identically distributed stan-

dard uniform random variables.

1. The pdf of min(U1, U2) is fmin(U1,U2)(x) = 2 (1− x) I(0,1)(x) and the pdf
of max(U1, U2) is fmax(U1,U2)(x) = 2x I(0,1)(x). Hence the Beta(2, 2) ≡
BeTaBoOp(2, 2, 1, 1) tied to the Verhults model (1) is proportional to
the product of the pdf of the maximum and the pdf of the minimum of
independent standard uniforms.

2. The pdf of the product U3U4 is f(U3U4)(x) = − ln x I(0,1)(x) — and more
generally, the pdf of n independent standard uniform random variables is
a BeTaBoOp(1, 1, 1, n) — and hence the pdf of the BeTaBoOp(2, 1, 1, n)
tied to (4) is proportional to the product of fmax(U1,U2) by f(U3U4). In-
terpreting fmax(U1,U2) f(U3U4) and fmax(U1,U2) fmin(U1,U2) as “likelihoods”,
this shows that the model (4) favors more extreme population growth
than the model (1).
More explicitly, the probability density functions f1,1,1,2f(U3U4)(x) =
−ln x I(0,1)(x) and f1,2,1,1fmin(U1,U2)(x) = 2 (1−x) I(0,1)(x) intersect each
other at x ≈ 0.203188, and scrutiny of the graph shows that the prob-
ability that U3 U4 takes on very small values below that value is much
higher than the probability of min(U1, U2) < 0.203188, and therefore the
controlling retroaction tends to be smaller, allowing for unsustainable
growth.
For more on product of functions of powers of products of independent
standard uniform random variables, cf. Brilhante et al. [4] and Arnold et
al. [2].

3. Rachev and Resnick, [11] developed a theory of stable limits of randomly
stopped maxima with geometric subordinator (also called geo-max sta-
bility) similar to what had been independently achieved by Rényi [12],
Kovalenko [7] and in all generality by Kozubowski [8], for a panorama cf.
also Gnedenko and Korolev, [6].
The geo-stable maxima laws are the logistic, the log-logistic and the
simetrized log-logistic (corresponding to the Gumbel, Fréchet and Weibull
when there is no geometric thinning, and with similr characterization



of domains of attraction). Hence, the classical Verhulst (1) population
growth model can also be looked at as an extreme value model, but in a
context where there exists a natural thinning that maintains sustainable
growth.

More involved population dynamics growth differential equation models
do have explicit solution for special combinations of the shape parameters,
for instance the solution of

d
dt
N(t) = r [N(t)]2−γ

[
1− N(t)

K

]γ
, γ < 2 (5)

is
N(t) =

K

1 +
{

(γ − 1) rK1−γt+
(
K
N0
− 1
)1−γ

} 1
1+γ

as shown by Turner et al. [15], cf. also Tsoularis [14].
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18. Verhults, P.-F. Deuxième mémoire sur la loi d’accroissement de la population.
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