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Abstract:

• This review paper focuses on statistical issues arising in modeling univariate extremes

of a random sample. In the last three decades there has been a shift from the area

of parametric statistics of extremes, based on probabilistic asymptotic results in ex-

treme value theory, towards a semi-parametric approach, where the estimation of the

right and/or left tail-weight is performed under a quite general framework. But new

parametric models can still be of high interest for the analysis of extreme events, if

associated with adequate statistical inference methodologies. After a brief reference

to Gumbel’s classical block methodology and later improvements in the parametric

framework, we present an overview of the developments on the estimation of parame-

ters of extreme events and testing of extreme value conditions under a semi-parametric

framework, and discuss a few challenging topics of open research in the area.
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1. INTRODUCTION, LIMITING RESULTS IN THE FIELD OF

EXTREMES AND PARAMETRIC APPROACHES

We shall assume to have access to a sample (X1, . . . , Xn) of n independent,

identically distributed (IID) or possibly stationary, weakly dependent random vari-

ables from an underlying cumulative distribution function (CDF), F , and shall

use the notation (X1,n ≤ · · · ≤ Xn,n) for the sample of associated ascending order

statistics (OSs). Statistics of univariate extremes (SUE) helps us to learn from

disastrous or almost disastrous events, of high relevance in society and with a

high social impact. The domains of application of SUE are thus quite diversified.

We mention the fields of hydrology, meteorology, geology, insurance, finance,

structural engineering, telecommunications and biostatistics (see, for instance,

and among others, Coles, 2001; Reiss and Thomas, 2001, 2007; Beirlant et al.,

2004, Section 1.3; Castillo et al., 2005; Resnick, 2007). Although it is possible to

find some historical papers with applications related to extreme events, the field

dates back to Gumbel, in papers from 1935 on, summarized in his book (Gumbel,

1958). Gumbel develops statistical procedures essentially based on Gnedenko’s

(Gnedenko, 1943) extremal types theorem (ETT), one of the main limiting results

in the field of extreme value theory (EVT), briefly summarized in the following.

1.1. Main limiting results in EVT

The main limiting results in EVT date back to the papers by Fréchet (1927),

Fisher and Tippett (1928), von Mises (1936) and Gnedenko (1943). Gnedenko’s

ETT provides the possible limiting behaviour of the sequence of maximum or

minimum values, linearly normalised, and an incomplete characterization, fully

achieved in de Haan (1970), of the domains of attraction of the so-called max-

stable (MS) or min-stable laws. Here, we shall always deal with the right-tail,

F (x) := 1 − F (x), for large x, i.e. we shall deal with top OSs. But all results

for maxima (top OSs) can be easily reformulated for minima (low OSs). Indeed,

X1,n = −max1≤i≤n(−Xi), and consequently, P(X1,n ≤ x) = 1− (1−F (x))n. MS

laws are defined as laws S such that the functional equation Sn(αnx+βn) = S(x),

n ≥ 1, holds for some αn > 0, βn ∈ R. More specifically, all possible non-

degenerate weak limit distributions of the normalized partial maxima Xn,n, of

IID random variables X1, . . . , Xn, are (generalized) extreme value distributions

(EVDs), i.e. if there are normalizing constants an > 0, bn ∈ R and some non-
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degenerate CDF G such that, for all x,

(1.1) lim
n→∞

P
{(
Xn,n − bn

)
/an ≤ x

}
= G(x),

we can redefine the constants in such a way that,

(1.2) G(x) ≡ Gγ(x) :=

{
exp

(
−(1 + γx)−1/γ

)
, 1 + γx > 0 if γ 6= 0

exp(− exp(−x)), x ∈ R if γ = 0,

given here in the von Mises-Jenkinson form (von Mises, 1936; Jenkinson, 1955).

If (1.1) holds, we then say that the CDF F which is underlying X1, X2, . . . , is in

the max-domain of attraction (MDA) of Gγ , in (1.2), and use often the notation

F ∈ DM (Gγ). The limiting CDFs, G, in (1.1), are then MS. They are indeed

the unique MS laws. The real parameter γ, the primary parameter of interest

in extreme value analysis (EVA), is called the extreme value index (EVI). The

EVI, γ, rules the behaviour of the right-tail of F . The EVD, in (1.2), is often

separated in the three following types:

(1.3)

Type I (Gumbel) : Λ(x) = exp(− exp(−x)), x ∈ R,
Type II (Fréchet) : Φα(x) = exp(−x−α), x ≥ 0,

Type III (max-Weibull) : Ψα(x) = exp(−(−x)α), x ≤ 0.

Indeed, with γ = 0, γ = 1/α > 0 and γ = −1/α < 0, respectively, we have

Λ(x) = G0(x), Φα(x) = G1/α(α(1 − x)) and Ψα(x) = G−1/α(α(x + 1)), with Gγ

the EVD in (1.2). The Fréchet domain of attraction (γ > 0) contains heavy-tailed

CDFs like the Pareto and the Student’s t-distributions, i.e. tails of a negative

polynomial type and infinite right endpoint. Short-tailed CDFs, with finite right

endpoint, like the beta CDFs, belong to the Weibull MDA (γ < 0). The Gumbel

MDA (γ = 0), is relevant for many applied sciences, and contains a great variety of

CDFs with an exponential tail, like the normal, the exponential and the gamma,

but not necessarily with an infinite right endpoint. As an example of a CDF

F ∈ DM(G0), with a finite right endpoint xF , we have the exponential-type

distribution, F (x) = K exp(−c/{xF − x}), for x < xF , c > 0, and K > 0.

Apart from the ETT and the already mentioned EVD, in (1.2), it is also

worth mentioning the generalized Pareto distribution (GPD), the limit distribu-

tion of scaled excesses over high thresholds (see the pioneering papers by Balkema

and de Haan, 1974; Pickands, 1975), which can be written as

(1.4) Pγ(x) = 1 + lnGγ(x) =

{
1− (1 + γx)−1/γ , 1 + γx > 0, x > 0 if γ 6= 0

1− exp(−x), x > 0, if γ = 0,

with Gγ given in (1.2), as well as the multivariate EVD, related with the limiting

distribution of the k largest values Xn−i+1:n, 1 ≤ i ≤ k, also called the extremal
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process (Dwass, 1964), with associated probability density function (PDF)

(1.5) hγ(x1, x2, · · · , xk) = gγ(xk)
k−1∏
j=1

gγ(xj)

Gγ(xj)
if x1 > x2 > · · · > xk,

where gγ(x) = dGγ(x)/dx, with Gγ(x) given in (1.2).

1.2. Parametric approaches to SUE

Deciding upon the right tail-weight for the distribution underlying the sam-

ple data, through a proper EVI-estimation, constitutes a very important starting

task in EVA. On the other hand, statistical inference about rare events is clearly

linked to observations which are extreme in some sense. There are different ways

to define such observations, leading to different approaches to SUE. We next

briefly refer the most common parametric approaches to SUE. For further details

on the topic, and pioneering papers on the subject, see Gomes et al. (2008a).

Block maxima (BM) method. With (λn, δn) ∈ R×R+, a vector of unknown

location and scale parameters, the ETT validates the approximation

(1.6) P
(
Xn,n ≤ x

)
= Fn(x) ≈ Gγ ((x− λn)/δn) .

Gumbel was pioneer in the use of approximations of the type of the one provided

in (1.6), but for any of the models in (1.3), suggesting the first model in SUE,

usually called the BM model or the annual maxima model or the extreme value

(EV) univariate model or merely Gumbel’s model. The sample of size n is di-

vided into k sub-samples of size r (usually associated to k years, with n = r× k,

r reasonably large). Next, the maximum of the r observations in each of the k

sub-samples is considered, and one of the extremal models in (1.3), obviously with

extra unknown location and scale parameters, is fitted to such a sample. Nowa-

days, whenever using this approach, still quite popular in environmental sciences,

it is more common to fit to the data a univariate EVD, Gγ((x − λr)/δr), with

Gγ given in (1.2), (λr, δr, γ) ∈ (R,R+,R) unknown location, scale and “shape”

parameters. All statistical inference is then related to EVDs.

The method of largest observations (LO). Although the BM-method has

proved to be fruitful in the most diversified situations, several criticisms have

been made on Gumbel’s technique, and one of them is the fact that we are

wasting information when using only observed maxima and not further top OSs,

if available, because they surely contain useful information about the right-tail of

the CDF underlying the data. To infer on the right-tail weight of the underlying



Overview and open research topics in Statistics of Univariate Extremes 5

model, it seems sensible to think on a small number k of top OSs from the

original data, and when the sample size n is large and k fixed, it is sensible to

consider the multivariate EVD, with a standardized PDF given in (1.5). Again,

unknown location and scale parameters, λn and δn, respectively, are considered

and estimated on the basis of the k top OSs, out of n. This approach to SUE is

the so-called LO method or multivariate EV model. It is now easier to increase

the number k of observations, contrarily to what happens in Gumbel’s approach.

Multi-dimensional EV approaches. It is obviously feasible to combine

the two aforementioned approaches to SUE. In each of the sub-samples asso-

ciated to Gumbel’s classical approach, we can collect a few top OSs modelled

through a multivariate EV model, and then consider the so-called multidimen-

sional EV model. Under this approach, we have access to the multivariate sample,

(X1, X2, . . . , Xk), where Xj = (X1j , . . . , Xijj), 1 ≤ j ≤ k, are multivariate EV

vectors. The multi-dimensional EV model is indeed the multivariate EV model for

the ij top observations, j = 1, . . . ,m, in sub-samples of size m′, with m×m′ = n.

The choices m = k (m′ = r) and ij = 1 for 1 ≤ j ≤ k originate the BM model.

The choices m′ = n (m = 1) and i1 = k originate the LO model.

The peaks over threshold (POT) approaches. The Paretian model for the

excesses, Xj − u > 0, 1 ≤ j ≤ k, over a high threshold u, suitably chosen, is

considered under this approach, in a certain sense parallel to the multivariate

EV model, but where we restrict our attention only to observations that exceed a

certain high threshold u, fitting the appropriate statistical model to the excesses

over u. On the basis of the approximation P (X − u ≤ x|X > u) ≈ Pγ(x/σ), with

Pγ(x) given in (1.4), we come to the so-called Paretian excesses model or POT

model. Statistical inference is then related to the GPD.

Bayesian approaches. The use of Bayesian methodology, within EVA, has

recently become quite common. We mention only some recent papers, written

after the monographs by Coles (2001) and Reiss and Thomas (2001), the ones by

Bermudez and Amaral-Turkman (2003), Bottolo et al. (2003), Stephenson and

Tawn (2004), on the use of reversible jump MCMC techniques for inference for

the EVD and the GPD and Diebolt et al. (2005), on a quasi-conjugate Bayesian

inference approach for the GPD with γ > 0, through the representation of a

heavy-tailed GPD as a mixture of an exponential and a gamma distribution.

Statistical choice of EV models under parametric frameworks. The

Gumbel type CDF, Λ ≡ G0 or the exponential (E) type CDF, E ≡ P0, with

Gγ and Pγ given in (1.2) and (1.4), respectively, are favorites in SUE, essentially
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because of the simplicity of associated inference. Additionally, γ = 0 can be

regarded as a change-point, and any separation between EV models, with Λ or E

playing a central and proeminent position, turns out to be an important statistical

problem. From a parametric point of view, empirical tests of H0 : γ = 0 versus

a sensible one-sided or two-sided alternative, either for the EVD or the GPD,

date back to Jenkinson (1955) and Gumbel (1965). Next, we can find in the

literature, different heuristic tests, among which we refer only one of the most

recent ones (Brilhante, 2004). We can also find locally asymptotically normal

tests (see Marohn, 2000, and Falk et al., 2008, among others). The fitting of the

GPD to data has been worked out in Castillo and Hadi (1997) and Chaouche

and Bacro (2004). The problem of goodness-of-fit tests for the GPD has been

studied by Choulakian and Stephens (2001) and Luceño (2006), again among

others. Tests from large sample theory, like the likelihood ratio test have been

dealt with by Hosking (1984) and Gomes (1989). Further details on this topic can

be found in Gomes et al. (2007a), an enlarged version of Gomes et al. (2008a).

1.3. Scope of the paper

In the late seventies, there has been an inflection from a parametric ap-

proach to SUE, based on the limiting models in EVT, towards a semi-parametric

approach, where the estimation of the left and the right-tails is done under a

quite general framework. Section 2 of this review paper is devoted to classical

semi-parametric inference. Recently, essentially for heavy tails, i.e. for γ > 0, but

also for a general γ ∈ R, the accommodation of bias of the classical estimators of

parameters of extreme events has been deeply considered in the literature. The

topic of second-order reduced-bias (SORB) estimation still seems to open inter-

esting perspectives in the field, and will be addressed in Section 3. Finally, in

Section 4, we shall discuss some still challenging topics in SUE, providing some

overall comments on the subject.

2. CLASSICAL SEMI-PARAMETRIC INFERENCE

Under these semi-parametric approaches, we work with the k top OSs as-

sociated to the n available observations or with the excesses over a high random

threshold, assuming only that, for a certain γ, the model F underlying the data

is in DM(Gγ) or in specific sub-domains of DM(Gγ), with Gγ provided in (1.2),

being γ the unique primary parameter of extreme events to be estimated, on the
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basis of a few top observations, and according to adequate methodology. There

is thus no fitting of a specific parametric model, dependent upon a location λ, a

scale δ and a shape γ. We usually need to base the EVI-estimation on the k top

OSs in the sample, with k intermediate, i.e. such that k = kn →∞ and k = o(n),

i.e. k/n → 0, as n → ∞. Such estimators, together with semi-parametric esti-

mators of location and scale (see, for instance, de Haan and Ferreira, 2006), can

next be used to estimate extreme quantiles, return periods of high levels, upper

tail probabilities and other parameters of extreme events. After a brief intro-

duction to first and second-order conditions in Section 2.1, we shall briefly refer,

in Section 2.2, several classical semi-parametric EVI-estimators. In Section 2.3,

we mention a few results on the testing of the EV condition F ∈ D(Gγ), under

a semi-parametric framework. Finally, in Section 2.4, we refer, also briefly, the

semi-parametric estimation of other parameters of extreme events.

2.1. First, second (and higher) order conditions

As mentioned above, in Section 1, the full characterization of DM (Gγ)

has been given in de Haan (1970), and can be also found in Falk et al. (2004)

and de Haan and Ferreira (2006). Indeed, with U standing for a (reciprocal)

quantile type function associated with F and defined by U(t) := (1/(1− F ))← (t)

= F←(1−1/t)= inf {x : F (x) ≥ 1− 1/t} , the extended regular variation property,

(2.1) F ∈ DM (Gγ) ⇐⇒ lim
t→∞

U(tx)− U(t)

a(t)
=

{
xγ−1
γ if γ 6= 0

lnx if γ = 0,

for every x > 0 and some positive measurable function a, is a well-known

necessary and sufficient condition for F ∈ DM (Gγ) (de Haan, 1984). Heavy-

tailed models, i.e. models F ∈ D+
M := DM (Gγ>0), are quite important in

the most diversified areas. We can then choose a(t) = γ U(t) in (2.1), and

F ∈ D+
M if and only if, for every x > 0, limt→∞ U(tx)/U(t) = xγ , i.e.

U is of regular variation with index γ, denoted U ∈ RVγ . More generally,

F ∈ D+
M ⇐⇒ F := 1 − F ∈ RV−1/γ ⇐⇒ U ∈ RVγ . For full details on

regular variation see Bingham et al. (1987).

Under a semi-parametric framework, apart from the first-order condition

in (2.1), we often need to assume a second-order condition, specifying the rate of

convergence in (2.1). It is then common to assume the existence of a function A∗,

possibly not changing in sign and tending to zero as t→∞, such that ∀x > 0,

(2.2) lim
t→∞

U(tx)−U(t)
a(t) − xγ−1

γ

A∗(t)
=

1

ρ∗

(
xγ+ρ

∗ − 1

γ + ρ∗
− xγ − 1

γ

)
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where ρ∗ ≤ 0 is a second-order parameter controlling the speed of convergence

of maximum values, linearly normalized, towards the limit law in (1.2). Then

limt→∞A
∗(tx)/A∗(t) = xρ

∗
, ∀x > 0, i.e. |A∗| ∈ RVρ∗ (de Haan and Stadtmüller,

1996). For heavy tails, the second-order condition is usually written as

(2.3) lim
t→∞

lnU(tx)− lnU(t)− γ lnx

A(t)
=

xρ − 1

ρ
,

where ρ ≤ 0 and A(t) → 0 as t → ∞. More precisely, |A| ∈ RVρ according to

Geluk and de Haan (1987). For the link between (A∗(t), ρ∗) and (A(t), ρ), see de

Haan and Ferreira (2006) and Fraga Alves et al. (2007). Third-order conditions

specify, in a parallel way, the rate of convergence either in (2.2) or in (2.3).

For further details on the third-order condition for heavy tails, see Gomes et al.

(2002a) and Fraga Alves et al. (2003a). For a general third-order framework,

see Fraga Alves et al. (2003b, Appendix; 2006). Higher-order conditions can be

similarly postulated, but restrict more and more the elected CDFs in DM(Gγ).

2.2. Classical semi-parametric EVI-estimation

The most basic EVI-estimators that have motivated several other refined

estimators, i.e. the Hill (H), Pickands (P), moment (M) and peaks over random

threshold-maximum likelihood (PORT-ML) estimators, are described in Section

2.2.1. Next, in Section 2.2.2, we briefly refer other classical EVI-estimators.

2.2.1. H, P, M and PORT-ML EVI-estimators

The H-estimator. For heavy tailed models, i.e. in D+
M , a simple EVI-estimator

has been proposed in Hill (1975). The H-estimator, denoted γ̂Hn,k, is the average

of the scaled log-spacings as well as of the log-excesses, given by

(2.4) Ui := i

{
ln
Xn−i+1,n

Xn−i,n

}
and Vik := ln

Xn−i+1,n

Xn−k,n
, 1 ≤ i ≤ k < n,

respectively. Its asymptotic properties have been thoroughly studied by several

authors (see de Haan and Peng, 1998, and the review in Gomes et al., 2008a).

The P-estimator. For a general EVI, γ ∈ R, and considering as the basis of

the estimation the k top OSs, we can write the P-estimator (Pickands, 1975) as

γ̂Pn,k := ln
((
Xn−[k/4]+1,n −Xn−[k/2]+1,n

)
/
(
Xn−[k/2]+1,n −Xn−k+1,n

))
/ln 2,
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where [x] denotes the integer part of x. Asymptotic properties of this estimator

are provided in Dekkers and de Haan (1989).

The M-estimator. Dekkers et al. (1989) proposed the M-estimator, based on

(2.5) M
(j)
n,k :=

1

k

k∑
i=1

{lnXn−i+1,n − lnXn−k,n}j , j > 0,

the j-moment of the log-excesses, being M
(1)
n,k ≡ γ̂Hn,k the H-estimator. The M-

estimator is given by γ̂Mn,k := M
(1)
n,k + 1

2

(
1−

(
M

(2)
n,k/[M

(1)
n,k]

2 − 1
)−1)

.

The PORT-ML-estimator. Conditionally on Xn−k,n, with k intermediate,

Dik := Xn−i+1,n−Xn−k,n, 1 ≤ i ≤ k, are approximately the k top OSs associated

to a sample of size k from GPγ(αx/γ), γ, α ∈ R, with GPγ(x) given in (1.4).

The solution of the maximum-likelihood (ML) equations associated to the above

mentioned set-up (Davison, 1984) gives rise to an explicit EVI-estimator, the

PORT-ML EVI-estimator, named PORT after Araújo Santos et al. (2006), and

given by γ̂PORT−ML
n,k := 1

k

∑k
i=1 ln(1+α̂ Dik), where α̂ is the implicit ML estimator

of the unknown “scale” parameter α. A comprehensive study of the asymptotic

properties of this ML estimator has been undertaken in Drees et al. (2004). As

recently shown by Zhou (2009, 2010), such estimator is valid for γ > −1.

2.2.2. Other “classical” semi-parametric EVI-estimators

Kernel (K) and QQ-estimators. A general class of estimators for a pos-

itive EVI are the K-estimators proposed by Csörgő et al. (1985), given by

γ̂Kn,k :=
∑n

i=1K(i/k) {lnXn−i+1,n − lnXn−k,n}/
∑n

i=1K(i/k), where K(·) is some

non-negative, non-increasing kernel defined on (0,∞) and integrating to one.

As an example, the H-estimator is a kernel estimator associated to the ker-

nel K(t) = I]0,1](t), where IA(t) denotes the indicator function (IA(t) = 1 if

t ∈ A, and equal to 0 otherwise). Kernel estimators for a real EVI are considered

in Groeneboom et al. (2003). The H-estimator can also be obtained from the

Pareto QQ-plot, through the use of a näıve estimator of the slope in the ultimate

right-end of the QQ-plot. More flexible regression methods can be applied to

the highest k points of the Pareto QQ-plot. We refer Beirlant et al. (1996a,c),

Schultze and Steinbach (1996), Kratz and Resnick (1996), Csörgő and Viharos

(1998) and Oliveira et al. (2006). They are all K-estimators.

Generalized P-estimators. The large asymptotic variance of the P-

estimator has motivated different generalizations of the type γ̂
P(θ)
n,k :=
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− ln
((
Xn−[θ2k]+1,n −Xn−[θk]+1,n

)
/
(
Xn−[θk]+1,n −Xn−k,n

))
/ln θ, 0 < θ < 1.

(Fraga Alves, 1992, 1995; Themido Pereira, 1993; Yun, 2002). Drees (1995)

establishes the asymptotic normality of linear combinations of P-estimators, ob-

taining optimal weights that can be adaptively estimated from the data. Related

work appears in Falk (1994). In Segers (2005), the P-estimator is generalized in

a way that includes all of its previously known variants.

The generalized Hill (GH) estimator. The slope of a generalized quantile

plot led Beirlant et al. (1996b) to the GH-estimator, valid for all γ ∈ R, with the

functional form, γ̂GH
n,k = γ̂Hn,k + 1

k

∑k
i=1

{
ln γ̂Hn,i − ln γ̂Hn,k

}
. Further study of this

estimator has been performed in Beirlant et al. (2005).

The Mixed Moment (MM) estimator. Fraga Alves et al. (2009) introduced

the so-called MM-estimator, involving not only the log-excesses but also another

type of moment-statistics given by ϕ̂n,k :=
(
M

(1)
n,k − L

(1)
n,k

)
/
(
L
(1)
n,k

)2
, with L

(1)
n,k :=

1
k

∑k
i=1 (1−Xn−k,n/Xn−i+1,n) , and where M

(1)
n,k is defined in (2.5). The statistic

ϕ̂n,k can easily be transformed into what has been called the MM-estimator, valid

for any γ ∈ R, and given by γ̂MM
n,k :=

(
ϕ̂n(k)− 1

)
/
(
1 + 2 min (ϕ̂n(k)− 1, 0)

)
. The

MM-estimator appears indeed as a promising alternative to the most popular

EVI-estimators for γ ∈ R.

Semi-parametric probability weighted moment (PWM) estimators.

The PWM method is a generalization of the method of moments, introduced in

Greenwood et al. (1979). For γ < 1 and for CDFs like the EVD, EVγ((x−λ)/δ),

with EVγ(x) given in (1.2), the Pareto d.f., Pγ(x; δ) = 1 − (x/δ)−1/γ , x > δ,

and the GPD, GPγ(x/δ), with GPγ(x) defined in (1.4), the PWM have simple

expressions, which allow a simple parametric estimation of the EVI (see Hosk-

ing et al., 1985; Hosking and Wallis, 1987; Diebolt et al., 2007, 2008c). On

the basis of the GPD, de Haan and Ferreira (2006) considered, for γ < 1, the

semi-parametric GPPWM EVI-estimator, with GPPWM standing for generalized

Pareto PWM, given by γ̂GPPWM
n,k := 1− 2â?1(k)/

(
â?0(k)− 2â?1(k)

)
, 1 ≤ k < n, and

â?s(k) :=
∑k

i=1

(
i
k

)s
(Xn−i+1:n−Xn−k:n)/k , s = 0, 1. On the basis of the Pareto

model, Caeiro and Gomes (2011) introduced the PPWM EVI-estimators, with

PPWM standing for Pareto PWM, given by γ̂PPWM
n,k := 1−â1(k)/

(
â0(k)− â1(k)

)
,

where âs(k) := 1
k+1

∑k+1
i=1

(
i

k+1

)s
Xn−i+1:n, s = 0, 1 with 1 ≤ k < n.

Other estimators. Falk (1995a) proposed the location-invariant estimator,

γ̂n,k := 1
k

∑k−1
i=1 ln

(
Xn,n −Xn−i,n

)
/
(
Xn,n −Xn−k,n

)
, as a complement of the

PORT-ML estimator for γ < −1/2. Such an estimator has been improved,

on the basis of an iterative procedure, in Hüsler and Müller (2005). The non-
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invariance for shifts of the H-estimator led Fraga Alves (2001) to the consideration

for k > k0, k0 adequately chosen, of the location invariant Hill-type estimator

γ̂n,k,k0 := 1
k0

∑k
i=1 ln

((
Xn−i+1,n −Xn−k,n

)
/
(
Xn−k0+1,n −Xn−k,n

))
. Beirlant et

al. (1996b) consider a general class of estimators based on the mean, median and

trimmed excess functions. Drees (1998) obtains asymptotic results for a gen-

eral class of EVI-estimators, arbitrary smooth functionals of the empirical tail

quantile function Qn(t) = Xn−[knt],n, t ∈ [0, 1]. Such a class includes H, P and

K-estimators, among others. For further references see, e.g., Section 6.4 of Em-

brechts et al. (1997), Beirlant et al. (1996a;1998), Csörgő and Viharos (1998),

Chapter 3 of de Haan and Ferreira (2006), and Ling et al. (2011).

2.2.3. Consistency and asymptotic normal behaviour of the estimators

Weak consistency of any of the aforementioned EVI-estimators is achieved

in the sub-domain of DM(EVγ) where they are valid, whenever (2.1) holds and

k is intermediate. Under the validity of the second-order condition in (2.2), it is

possible to guarantee their asymptotic normality. More precisely, denoting T any

of the aforementioned EVI-estimators, and with B(t) a bias function converging

to zero as t → ∞ and strongly related with the A∗(t) function in (2.3), it is

possible to guarantee the existence of CT ⊂ R and (bT , σT ) ∈ R× R+, such that:

(2.6) γ̂Tn,k
d
= γ + σTP

T
k /
√
k + bTB(n/k) + op(B(n/k)),

with P Tk an asymptotically standard normal random variable. Consequently, for

values k such that
√
k B(n/k)→ λ, finite, as n→∞,

√
k
(
γ̂Tn,k − γ

) d−→
n→∞

Normal(λbT , σ
2
T

).

The values bT and σ2
T

are usually called the asymptotic bias and asymptotic

variance of γ̂Tn,k respectively. Details on the values of (bT , σT ) and the function B,

in (2.6) are given in the aforementioned papers associated with the T -estimators.

2.3. Testing under a semi-parametric framework

Testing the hypothesis H0 : F ∈ DM(G0) against H1 : F ∈ DM(Gγ),

γ 6= 0, or the corresponding one-sided alternatives, under a semi-parametric

framework, it is obviously a natural and sensible issue. In a broad sense, tests of

this nature can already be found in papers prior to 2000 (see Gomes et al., 2007a).

Non-parametric tests appear in Jurečková and Picek (2001). But the testing of
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extreme value conditions can be dated back to Dietrich et al. (2002), who propose

a test statistic to test whether the hypothesis F ∈ DM(Gγ) is supported by the

data, together with a simpler version devised to test whether F ∈ DM(Gγ≥0).

Further results of this last nature can be found in Drees et al. (2006) for testing

F ∈ DM(Gγ>−1/2). Tables of associated critical points are provided in Hüsler

and Li (2006). Beirlant et al. (2006) tackle the goodness-of-fit problem for the

class of heavy-tailed or Pareto-type distributions. For overviews of the subject

see Hüsler and Peng (2008) and Neves and Fraga Alves (2008). See also Koning

and Peng (2008) and Goegebeur and Guillou (2010).

2.4. Estimation of other parameters of extreme events

High quantiles of probability 1 − p, p small, or equivalently in financial

frameworks the Value at Risk at a level p (VaRp) are possibly the most important

parameters of extreme events, functions of the EVI, as well as of location/scale

parameters. In a semi-parametric context, the most usual estimators of a quan-

tile χ1−p := U(1/p), with p small, can be easily derived from (2.1), through the

approximation U(tx) ≈ U(t) +a(t)(xγ − 1)/γ. The fact that Xn−k+1,n
p∼ U(n/k)

enables us to estimate χ1−p on the basis of this approximation and adequate es-

timates of γ and a(n/k). For the simpler case of heavy tails, the approximation

is U(tx) ≈ U(t)xγ , and we get χ̂
1−p,k := Xn−k:n (k/(np))γ̂k , where γ̂k is any

consistent semi-parametric EVI-estimator. This estimator is of the type of the

one introduced by Weissman (1978). Details on semi-parametric estimation of

extremely high quantiles for γ ∈ R, can be found in Dekkers and de Haan (1989),

de Haan and Rootzén (1993) and more recently in Ferreira et al. (2003). Fraga

Alves et al. (2009) also provide, jointly with the MM-estimator, accompanying

shift and scale estimators that make high quantile estimation almost straightfor-

ward. Other approaches to high quantile estimation can be found in Matthys

and Beirlant (2003). None of the above mentioned quantile estimators reacts ad-

equately to a shift of the data. Araújo Santos et al. (2006) provide a class of semi-

parametric VaRp estimators which enjoy such a feature, the empirical counterpart

of the theoretical linearity of a quantile χp, χp(δX+λ) = δχp(X)+λ, for any real

λ and positive δ. This class of estimators is based on the PORT methodology,

providing exact properties for risk measures in finance: translation-equivariance

and positive homogeneity. The estimation of the probability of exceedance of

a fixed high level, has been dealt with by Dijk and de Haan (1992) and Fer-

reira (2002), among others. See also Guillou et al. (2010) and You et al. (2010).

The estimation of the endpoint of an underlying CDF has been studied by Hall
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(1982), Csörgő and Mason (1989), Aarssen and de Haan (1994), among others.

Estimation of the mean of a heavy-tailed distribution has been undertaken by

Peng (2001) and Johansson (2003). Estimation of the Weibull tail coefficient

dates back to Girard (2004). See also Goegebeur et al. (2010a), among others.

Further details on the topic can be found in de Haan and Ferreira (2006).

3. SORB ESTIMATION

Most of the classical semi-parametric estimators of any parameter of ex-

treme events have a strong bias for moderate up to large values of k, including

the optimal k, in the sense of minimal mean squared error (MSE). Accommo-

dation of bias of classical estimators of parameters of extreme events has been

deeply considered in the recent literature. We mention the pioneering papers of

Peng (1998), Beirlant et al. (1999), Feuerverger and Hall (1999) and Gomes et

al. (2000), where appeared always the old trade-off between variance and bias.

Such a trade-off was removed with an adequate estimation of the second-order

parameters, as done in Caeiro et al. (2005) and Gomes et al. (2007b; 2008c),

who introduced different types of minimum-variance reduced-bias (MVRB) EVI-

estimators. Such estimators have an asymptotic variance equal to the one of

the Hill EVI-estimator but an asymptotic bias of smaller order, overpassing the

classical ones for all k. In Section 3.1 we deal with SORB semiparametric EVI-

estimation and in Section 3.2, we briefly refer the recent literature on SORB

semi-parametric estimation of other parameters of extreme events.

3.1. SORB semi-parametric EVI-estimation

Let us consider any “classical” semi-parametric EVI-estimator, γ̂n,k. Let us

also assume that a distributional representation similar to the one in (2.6), with

(bT , σT ) replaced by (b, σ), holds for γ̂n,k. For intermediate k, γ̂n,k is consistent

for the EVI-estimation, and it is asymptotically normal if we further assume that√
kB(n/k) → λ, finite. Approximations for the variance and the squared-bias

of γ̂n,k are then given by σ2/k and b2B2(n/k) respectively. Consequently, the

pattern of these estimators exhibit the same type of peculiarities: a high variance

for high thresholds Xn−k,n, i.e. for small k; a high bias for low thresholds, i.e. for

large k; a small region of stability of the sample path (plot of the estimates versus

k), making problematic the adaptive choice of the threshold, on the basis of any

sample paths’ stability criterion; a “very peaked” MSE, making difficult the choice
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of the value k0 := arg mink MSE (γ̂n,k). These peculiarities have led researchers

to consider the possibility of dealing with the bias term in an appropriate manner,

building new estimators γ̂Rn,k, here called SORB EVI-estimators. Particularly, for

heavy tails, i.e. γ > 0, the reduction of bias is a very important problem for the

estimation of γ or of the Pareto index, α = 1/γ, in case the slowly varying part of

the Pareto type model disappears at a very slow rate. We consider the following

definition, already provided in Reiss and Thomas (2007), Chapter 6.

Definition 3.1. Under the second-order condition in (2.2) and for in-

termediate k, the statistic γ̂Rn,k, a consistent EVI-estimator, based on the k top

OSs in a sample from F ∈ DM(EVγ), is said to be a SORB semi-parametric EVI-

estimator, if there exist σR > 0 and an asymptotically standard normal random

variable PRk , such that for a large class of models in DM(EVγ), and with B(.)

the function in (2.6),

(3.1) γ̂Rn,k
d
= γ + σRP

R
k /
√
k + op(B(n/k)).

Notice that for the SORB EVI-estimators, we no longer have a dominant

component of bias of the order of B(n/k), as in (2.6). Therefore,

√
k
(
γ̂Rn,k − γ

) d−→
n→∞

Normal
(
0, σ2

R

)
not only when

√
kB(n/k) → 0 (as for classical estimators), but also when√

kB(n/k)→ λ, finite and non-null. Such a bias reduction provides usually a

stable sample path for a wider region of k-values, a “bath-shaped” MSE and a

reduction of the MSE at the optimal level, in the sense of minimum MSE.

Such an approach has been carried out essentially for heavy tails in the

most diversified manners. The key ideas are either to find ways of getting rid

of the dominant component bB(n/k) of bias, in (2.6), or to go further into the

second-order behaviour of the basic statistics used for the estimation of γ, like

the log-excesses or the scaled log-spacings, in (2.4). We first mention some pre-

2000 results about bias-corrected estimators in EVT. Such estimators may be

dated back to Gomes (1994b), Drees (1996) and Peng (1998), among others.

Gomes uses the generalized jackknife (GJ) methodology in Gray and Schucany

(1972), and Peng deals with linear combinations of adequate EVI-estimators, in

a spirit close to the one associated to the GJ technique. Feuerverger and Hall

(1999) discuss the question of the possible misspecification of the second-order

parameter ρ at −1, a value that corresponds to many commonly used heavy-

tailed models, like the Fréchet. Within the second-order framework, Beirlant et
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al. (1999) investigate the accommodation of bias in the scaled log-spacings and

derive approximate “ML” and “least squares” SORB EVI-estimators. In Section

3.1.1, we provide details about the GJ EVI-estimation. In Section 3.1.2 we briefly

review an approximate ML approach, together with the introduction of simple

SORB EVI-estimators based on the scaled log-spacings or the log-excesses, in

(2.4). Second-order parameters are usually decisive for the bias reduction, and we

deal with their estimation in Section 3.1.3. Finally in Section 3.1.4, we conclude

with some remarks about further literature on SORB EVI-estimation, including

the recent first steps on SORB EVI-estimation for a general γ ∈ R.

3.1.1. A brief review of GJ estimators of a positive EVI

The pioneering SORB EVI-estimators are, in a certain sense, GJ estimators,

i.e. affine combinations of well-known estimators of γ. For details on the GJ

methodology, see Gray and Schucany (1972). Whenever we are dealing with semi-

parametric EVI-estimators, or even estimators of other parameters of extreme

events, we have usually information about their asymptotic bias. We can thus

choose estimators with similar asymptotic properties, and build the associated

GJ random variable or statistic. This methodology has been used in Gomes et

al. (2000, 2002b), among others, and revisited by Gomes et al. (2011c). Indeed, if

the second-order condition, in (2.3), holds, we easily find two statistics γ̂
(j)
n,k, such

that (2.6) holds for both statistics. The ratio between the dominant components

of bias of γ̂
(1)
n,k and γ̂

(2)
n,k is q = b1/b2 = q(ρ), and we get the GJ random variable,

(3.2) γ̂
GJ(ρ)
n,k :=

(
γ̂
(1)
n,k − q(ρ) γ̂

(2)
n,k

)
/(1− q(ρ)).

We can then say that, under the second-order condition, in (2.3), a distri-

butional representation of the type of the one in (3.1) holds for γ̂
GJ(ρ)
n,k , with

σ2
GJ

> σ2
H

= γ2 and (P
R

k , B(n/k)) replaced by (P
GJ

k , A(n/k)). The same result

remains true for the GJ EVI-estimator, γ
GJ(ρ̂)
n,k , provided that ρ̂− ρ = op(1) for

all k on which we initially base the EVI-estimation. Then (Gomes and Martins,

2002), if
√
k A(n/k)→ λ, finite,

(3.3)
√
k
(
γ̂
GJ(ρ̂)
n,k − γ

)
d−→

n→∞
Normal

(
0, σ2

GJ

)
.

The result in (3.3), comes from the fact that, through the use of Taylor’s expan-

sion, we can write

(3.4) γ̂
GJ(ρ̂)
n,k

d
= γ̂

GJ(ρ)
n,k (k) +

(
ρ̂− ρ

)(
Op
(
1/
√
k
)

+Op
(
A(n/k)

))
(1 + op(1)).

A closer look at (3.4) reveals that it does not seem convenient to compute ρ̂ at

the value k considered for the EVI-estimation. Indeed, if we do that, and since
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we have ρ̂ − ρ = ρ̂k − ρ = Op
(
1/
(√
k A(n/k)

))
(see Fraga Alves et al., 2003a),

(ρ̂− ρ)A(n/k) is a term of the order of 1/
√
k, and we are going to have a change

in the asymptotic variance of the EVI-estimator. Gomes et al. (2000) have indeed

suggested the misspecification of ρ at ρ = −1, essentially due not only to the high

bias and variance of the exhisting estimators of ρ at that time, but also to the

idea of considering ρ̂ = ρ̂k. Nowadays, the use of any of the algorithms in Gomes

and Pestana (2007a,b), among others, enables us to get the limiting result in

(3.3), for k-values such that
√
k A(n/k)→∞, as n→∞.

3.1.2. Accommodation of bias in the scaled log-spacings and in the log-excesses:

alternative SORB EVI-estimators

The ML EVI-estimation based on the scaled log-spacings. The accommo-

dation of bias in the scaled log-spacings Ui, in (2.4), has also been another source

of inspiration for the building of SORB EVI-estimators. Under the second-order

condition in (2.3), but for ρ < 0, i.e. working in Hall’s class of Pareto-type models

(Hall, 1982), with a right-tail function F (x) = Cx−1/γ
(
1 +Dxρ/γ + o

(
xρ/γ

))
, as

x→∞, C > 0, D real, ρ < 0, we can choose in (2.3),

(3.5) A(t) = α tρ =: γ β tρ, β ∈ R, ρ < 0,

where β can be regarded as a slowly varying function. Beirlant et al. (1999)

provide the approximation

(3.6) Ui ∼
(
γ +A(n/k) (i/k)−ρ

)
Ei, 1 ≤ i ≤ k,

where Ei, i ≥ 1, denotes a sequence of IID standard exponential random vari-

ables. Feuerverger and Hall (1999) consider the approximation,

(3.7) Ui ∼ γ exp
(
A(n/k) (i/k)−ρ /γ

)
Ei = γ exp (A(n/i)/γ)Ei, 1 ≤ i ≤ k.

The approximation (3.6), or equivalently (3.7), has been made more precise in

the asymptotic sense, in Beirlant et al. (2002). The use of the approximation in

(3.7) and the joint maximization, in γ, β and ρ, of the approximate log-likelihood

of the scaled log-spacings,

logL(γ, β, ρ;Ui, 1 ≤ i ≤ k) = −k log γ − β
k∑
i=1

(i/n)−ρ − 1

γ

k∑
i=1

e−β(i/n)
−ρ
Ui,

led Feuerverger and Hall to an explicit expression for γ̂, given by

(3.8) γ̂ = γ̂
FH(β̂,ρ̂)

n,k :=
1

k

k∑
i=1

e−β̂(i/n)
−ρ̂
Ui,
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as a function of β̂ and ρ̂, where β̂ = β̂
FH(ρ̂)
n,k and ρ̂ = ρ̂FHn,k are both computed at

the same k used for the EVI-estimation, and are numerically obtained through

(3.9) (β̂, ρ̂) := arg min
(β,ρ)

{
log
(
1
k

k∑
i=1

e−β(i/n)
−ρ
Ui

)
+ β

(
1
k

k∑
i=1

(i/n)−ρ
)}
.

If k is intermediate and the second-order condition (2.3) hold, it is possible to

state that if ρ is unknown as well as β, as usually happens, and they are both

estimated through the above mentioned ML technique,

(3.10)
√
k
(
γ̂
FH(β̂,ρ̂)
n,k − γ

)
d−→

n→∞
Normal

(
0, σ2

FH
= γ2

(1− ρ
ρ

)4)
.

Again, even when
√
k A(n/k) → λ, non-null, we have a null asymptotic bias

for the reduced-bias EVI-estimator, but at the expenses of a larger asymptotic

variance, ruled by σ2
FH

= γ2 ((1− ρ)/ρ)4. Note that the asymptotic variance is

smaller, and given by γ2 ((1− ρ)/ρ)2, if we assume ρ to be known.

A simplified maximum likelihood EVI-estimator based on the external

estimation of ρ. The use of the first-order approximation, ex = 1+x, as x→ 0,

in the two ML equations that provided before (β̂, ρ̂), led Gomes and Martins

(2002) to an explicit estimator for β, given by

(3.11) β̂
GM(ρ̂)
n,k :=

(
k

n

)ρ̂ ( 1
k

∑k
i=1

(
i
k

)−ρ̂)
Ĉ0 − Ĉ1(

1
k

∑k
i=1

(
i
k

)−ρ̂)
Ĉ1 − Ĉ2

, Ĉj =
1

k

k∑
i=1

( i
k

)−jρ̂
Ui.

and, on the basis of an adequate consistent estimator ρ̂ of ρ, they suggest the

following approximate ML estimator for the EVI, γ,

(3.12) γ̂
GM(ρ̂)
n,k :=

1

k

k∑
i=1

Ui − β̂GM(ρ̂)
n,k

(n
k

)ρ̂
Ĉ1.

The estimator in (3.12) is clearly a bias-corrected Hill estimator, i.e. the dom-

inant component of the bias of the H-estimator, equal to A(n/k)/(1 − ρ) =

γβ(n/k)ρ/(1 − ρ) is estimated through β̂
GM(ρ̂)
n,k (n/k)ρ̂ Ĉ1, and directly removed

from the H-estimator, which can also be written as γHn,k =
∑k

i=1 Ui/k. Un-

der the same conditions as before, the asymptotic variance of γ̂
GM(ρ̂)
n,k is σ2

GM
=

γ2(1− ρ)2/ρ2 < σ2
FH

, but still greater than σ2
H

= γ2.

External estimation of second-order parameters and the weighted Hill

(WH) EVI-estimator. In a trial to accommodate bias in the excesses over

a high random threshold, Gomes et al. (2004b) were led, for heavy tails, to a

weighted combination of the log-excesses Vik, 1 ≤ i ≤ k < n, also in (2.4), giving
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rise to the WH EVI-estimator in Gomes et al. (2008c), given by

(3.13) γ̂WH
n,k,β̂,ρ̂

:=
1

k

k∑
i=1

p
ik

(β̂, ρ̂) Vik, pik(β̂, ρ̂) := eβ̂ (n/k)ρ̂((i/k)−ρ̂−1)/(ρ̂ ln(i/k)),

where (β̂, ρ̂) are suitable consistent estimators of second-order parameters (β, ρ).

The key of success of the WH-estimator lies in the estimation of β and ρ at

a level k1, such that k = o(k1), with k the number of top OSs used for the

EVI-estimation. The level k1 needs to be such that (β̂, ρ̂) is consistent for the

estimation of (β, ρ) and ρ̂−ρ = op(1/ lnn). For more details on the choice of k1,

see Gomes et al. (2008c), and more recently Caeiro et al. (2009). Comparatively to

the SORB EVI-estimators available in the literature and published prior to 2005,

this EVI-estimator is a MVRB EVI-estimator, in the sense that, comparatively

to the Hill estimator, it keeps the same asymptotic variance σ2
WH

= σ2
H

= γ2

and a smaller order asymptotic bias, outperforming the H-estimator for all k.

Related work appears in Caeiro et al. (2005) and Gomes et al. (2007b). Gomes

et al. (2007b) suggest the computation of the β-estimator β̂
GM(ρ̂)
n,k , used at (3.12),

at the level k1 used for the estimation of ρ. With the notation β̂ := β̂
GM(ρ̂)
n,k1

, they

suggest thus the replacement of the estimator in (3.12) by

(3.14) γ̂
M(β̂,ρ̂)
n,k := γHn,k − β̂

(n
k

)ρ̂
Ĉ1,

where γHn,k denotes the H-estimator, and (β̂, ρ̂) are adequate consistent estimators

of the second-order parameters (β, ρ). With the same objectives, but with a

slightly simpler analytic expression, we also refer the estimator

(3.15) γ̂
H(β̂,ρ̂)
n,k := γHn,k

(
1− β̂ (n/k)ρ̂ /(1− ρ̂)

)
,

studied in Caeiro et al. (2005). Notice that the dominant component of the bias of

the H-estimator is estimated in (3.15) through γHn,kβ̂(n/k)ρ̂/(1− ρ̂), and directly

removed from Hill’s classical EVI-estimator. The adequate estimation of β and

ρ at a level k1 of a higher order than the level k used for the EVI-estimation,

enables, for a large diversity of heavy-tailed models, the reduction of bias without

increasing the asymptotic variance, which is kept at the value γ2, the asymptotic

variance of Hill’s estimator. For overviews of this subject see Reiss and Thomas

(2007), Chapter 6, as well as Gomes et al. (2008a).

3.1.3. Second-order parameters estimation for heavy tails

The first estimator of the parameter ρ, in (2.3), with A(·) given in (3.5),

but where β can possibly be any slowly varying function, appears in Hall and
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Welsh (1985). Peng (1998) claims that no good estimator for the second-order

parameter ρ was then available in the literature, and considers a new ρ-estimator,

alternative to the ones in Hall and Welsh (1985), Beirlant et al. (1996c) and Drees

and Kaufmann (1998). Another estimator of ρ appears in Gomes et al. (2002a),

and more recently, we refer the classes of ρ-estimators in Goegebeur et al. (2008;

2010b) and Ciuperca and Mercadier (2010). We elect here particular members of

the class of estimators of the second-order parameter ρ proposed by Fraga Alves et

al. (2003a). Under adequate general conditions, they are asymptotically normal

estimators of ρ, if ρ < 0, which show highly stable sample paths as functions of

k, the number of top OSs used, for a wide range of large k-values. Such a class

of estimators, parameterised in a tuning real parameter τ ∈ R, is defined as,

(3.16) ρ̂
(τ)
n,k := −

∣∣∣3(T
(τ)
n,k − 1)/(T

(τ)
n,k − 3)

∣∣∣ , T
(τ)
n,k :=

(
M

(1)
n,k

)τ
−
(
M

(2)
n,k/2

)τ/2
(
M

(2)
n,k/2

)τ/2
−
(
M

(3)
n,k/6

)τ/3 ,

with M
(j)
n,k given in (2.5) and with the notation abτ = b ln a whenever τ = 0.

Gomes and Martins (2002) provide an explicit estimator for β, based on

the scale log-spacings Ui, in (2.4), and already given in (3.11). An additional

estimator of β, is provided in Caeiro and Gomes (2006). See also Gomes et al.

(2010), for a β-estimator based on the log-excesses.

Algorithms for the estimation of second-order parameters, in the above

mentioned lines, can be found in Gomes and Pestana (2007a,b). The use of

such algorithms, where the ρ-estimator is computed at k1 = [n1−ε], with ε small,

say ε = 0.001, enables us to guarantee that, for a large class of heavy-tailed

models, as n→∞, (ρ̂
(τ)
n,k1
− ρ) lnn = op(1), a crucial property of the ρ-estimator,

if we do not want to increase the asymptotic variance of the random variable,

function of (β, ρ), underlying the SORB EVI-estimator. Such a crucial property

can potentially be achieved if we compute ρ̂ at its optimal level (see Caeiro et al.,

2009), but the adaptive choice of such a level is still an open research topic.

3.1.4. Additional Literature on SORB EVI-estimation

Other approches to bias reduction, in the estimation of a positive EVI can

be found in Gomes and Martins (2001, 2004), Caeiro and Gomes (2002), Gomes

et al. (2004a; 2005a; 2005b; 2007c; 2011a), Canto e Castro and de Haan (2006)

and Willems et al. (2007), among others. Recently, Cai et al. (2011) introduced

the first SORB estimators for γ ∈ R, based on the PWM methodology.
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3.2. SORB semi-parametric estimation of other parameters of ex-

treme events

Reduced bias quantile estimators have been studied in Matthys et al.

(2004) and Gomes and Figueiredo (2006), who consider the classical SORB EVI-

estimators. Gomes and Pestana (2007b) and Beirlant et al. (2008) incorporate the

MVRB EVI-estimators in Caeiro et al. (2005) and Gomes et al. (2007b) in high

quantile semi-parametric estimation. See also Diebolt et al. (2008b), Beirlant et

al. (2009), Caeiro and Gomes (2009), Li et al. (2010). For a SORB estimation of

the Weibull-tail coefficient, we mention Diebolt et al. (2008a). Finally, for SORB

endpoint estimation, we mention Li and Peng (2009).

4. OVERALL COMMENTS AND FURTHER RESEARCH

We shall next discuss a few areas where a lot has been already done but

further research is still welcome. In our opinion, SUE is still a lively topic of

research. Important developments have appeared recently in the area of spatial

extremes, where parametric models seem again to be quite relevant. In this case,

and now that we have access to highly sophisticated computational techniques,

a great variety of parametric models can further be considered. And in a semi-

parametric framework, topics like threshold selection, trends and change points in

the tail behaviour, and clustering, among others, are still challenging.

4.1. Rates of convergence and penultimate approximations.

An important problem in EVT concerns the rate of convergence of

Fn(anx+ bn) towards Gγ(x), in (1.2), or, equivalently, the search for estimates

of the difference dn(F,Gγ , x) := Fn(anx + bn) − Gγ(x). Indeed, as detailed in

Section 1, parametric inference on the right-tail of F , usually unknown, is done

on the basis of the identification of Fn(anx+ bn) and of Gγ(x). And the rate of

convergence can validate or not the most usual models in SUE. As noted by Fisher

and Tippett (1928), despite of the fact that the normal CDF, Φ ∈ DM(G0), the

convergence of Φn(anx+ bn) towards G0(x) is extremely slow. They then show,

through the use of skewness and kurtosis coefficients as indicators of closeness,

that Φn(x) is “closer” to a suitable penultimate G−1/γn((x−λn)/δn), for γn > 0,

λn ∈ R, δn > 0, than to the ultimate G0((x − bn)/an). Such an approxima-
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tion is the so-called penultimate approximation and several penultimate models

have been advanced by several authors. Dated overviews of the modern theory

of rates of convergence in EVT, introduced in Anderson (1971), can be seen in

Galambos (1984) and Gomes (1994a). More recently, Gomes and de Haan (1999)

derived, for all γ ∈ R, exact penultimate approximation rates with respect to the

variational distance, under adequate differentiability assumptions. Kaufmann

(2000) proved, under weaker conditions, a result related to the one in Gomes and

de Haan (1999). This penultimate or pre-asymptotic behaviour has further been

studied by Raoult and Worms (2003) and Diebolt and Guillou (2005), among oth-

ers. Other type of penultimate approximations have been considered in Smith

(1987b). Among them, we mention a penultimate parametric model of the type,

(4.1) PGγ(x; r) = exp
(
−(1 + γx)−1/γ

(
1 + r(1 + γx)−1/γ

))
.

This type of models surely deserves a deeper consideration under statistical back-

grounds. Penultimate models seem to be possible and interesting alternatives to

the classical models but have never been deeply used in the literature. Concomi-

tantly, the convergence of the estimators can be really slow when ρ = 0 or ρ∗ = 0,

like happens with normal and loggamma distributions, important models in the

most diversified areas, and alternative estimation procedures are still needed.

4.2. Max-semistable laws

We also refer the class of max-semistable (MSS) laws, introduced by Grien-

vich (1992a, 1992b), Pancheva (1992), and further studied in Canto e Castro et

al. (2000) and in Temido and Canto e Castro (2003). Such a class is more general

than the class of MS laws, given in (1.2). Indeed, the possible MSS laws are

Gγ,ν(x) =

{
exp

(
−ν(ln(1 + γx))(1 + γx)−1/γ

)
, 1 + γx > 0 if γ 6= 0

exp (−ν(x) exp(−x)) , x ∈ R if γ = 0,

where ν(·) is a positive, limited and periodic function. A unit ν-function enables

us to get the MS laws in (1.2). Discrete models like the geometric and negative

binomial, and some multimodal continuous models, are in DMSS but not in DM.

A recent survey of the topic can be found in Pancheva (2010). Generalized P-

statistics have been used in Canto e Castro and Dias (2011), to develop methods

of estimation in the MSS context. See also Canto e Castro et al. (2011). Such a

diversity of models, if duly exploited from a statistical point of view, can surely

provide fruitful topics of research, both in parametric and semi-parametric setups.
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4.3. Invariance versus non-invariance

In statistics of extremes most of the methods of estimation are dependent

on the log-excesses, and consequently, are non-invariant with respect to shifts of

the data. But the invariance not only to changes in scale but also to changes in

location of any EVI estimator is statistically appealing. Wouldn’t be sensible to

use the PORT methodology in Araújo Santos et al. (2006), and consider PORT

EVI-estimators based on the transformed sample

(4.2) X∗i := Xi −X[np]+1,n, 0 < p < 1, 1 ≤ i ≤ n?

A similar procedure has been used in Fraga Alves et al. (2009), who also propose

a class of EVI-estimators alternative to the MM-estimator, invariant for changes

in location, and dependent on a similar tuning parameter p, 0 < p < 1. Such

estimators have the same functional expression of the original estimator T , say,

but the original observation Xi is replaced everywhere by X∗i , in (4.2), 1 ≤ i ≤ n.

Note that a similar procedure has already been used for the H and M EVI-

estimators, as well as for quantile estimation in Araújo Santos et al. (2006).

For PORT quantile estimation, see also Henriques-Rodrigues and Gomes (2009).

The shift invariant versions, dependent on the tuning parameter p have properties

similar to the ones of the original estimator T , provided we keep to adequate k-

values and choose an adequate tuning parameter p. Recent research on this topic

can be seen in Gomes et al. (2011b), but further research is still welcome.

4.4. Adaptive selection of sample fraction or threshold

A threshold is often set “almost arbitrarily” (for instance at the 90% or the

95% sample quantile). However, the choice of the threshold, or equivalently of

the number k of top OSs to be used is crucial for a reliable estimation of any

parameter of extreme events. The topic has already been extensively studied for

classical EVI-estimators, for which (2.6) holds. In Hall and Welsh (1985), Hall

(1990), Beirlant et al. (1996c), Drees and Kaufmann (1998) and Danielsson et al.

(2001), methods for the adaptive choice of k are proposed for the H-estimator,

some of them involving the bootstrap technique. Gomes and Oliveira (2001) also

uses the bootstrap methodology to provide an adaptive choice of the threshold,

alternative to the one in Danielsson et al. (2001), and easy to generalise to other

semi-parametric estimators of parameters of extreme events. For a general γ and

for the M-estimator and a generalized P-estimator, see Draisma et al. (1999).
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These authors also use the bootstrap methodology. Beirlant et al. (2002) con-

sider the exponential regression model (ERM) introduced in Beirlant et al. (1999),

and discuss applications of the ERM to the selection of the optimal sample frac-

tion in EV estimation. They also derive a connection between the new choice

strategy in the paper and the diagnostic proposed in Guillou and Hall (2001).

Csörgő and Viharos (1998) provide a data-driven choice of k for the kernel class

of estimators. Apart from the papers by Drees and Kaufmann (1998) and Guillou

and Hall (2001), where choice of the optimal sample fraction is based on bias sta-

bility, the other papers make the optimal choice minimizing the estimated MSE.

Possible heuristic choices are provided in Gomes and Pestana (2007b), Gomes

et al. (2008e) and Beirlant et al. (2011). The adaptive SORB estimation is still

giving its first steps. We can however mention the recent papers by Gomes et al.

(2011a,d). Is it sensible to use bootstrap computational intensive procedures for

threshold selection or there will be simpler techniques possibly related with bias

pattern? Is it possible to apply a similar methodology for the estimation of other

parameters of extreme events?

4.5. Other possible topics of research in SUE

Testing whether F ∈ DM(Gγ), for a certain γ, is a crucial topic, already

dealt with in several articles referred both in Section 1.2 as well as in Section 2.3.

And what about testing second-order and third-order conditions? Change-points

detection is also a challenging topic of research. And SUE for weakly dependent

data, with all problems related with clustering of extreme values still deserves

further research. SUE for randomly censored data is another challenging topic.

See the recent papers Beirlant et al. (2007; 2010), Einmahl et al. (2008a) and

Gomes and Neves (2011). Statistics of extremes in athletics and estimation of

the endpoint is another of the relevant topics in SUE. We mention the recent

papers by Einmahl and Magnus (2008), Li and Peng (2009), Einmahl and Smets

(2011), Henriques-Rodrigues et al. (2011) and Li et al. (2011). Recent models,

like the extreme value Birnbaum-Saunders model in Ferreira et al. (2011), can

also become relevant in the area of SUE. Moreover, the estimation of second

and higher order parameters still deserves further attention, particularly due to

the importance of such estimation in SORB estimators of parameters of extreme

events.
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[40] Csörgő, S.; and Mason, D.M. (1989). Simple estimators of the endpoint of
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