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Abstract. In this article, we begin with an asymptotic comparison at optimal levels of the so-called

“maximum likelihood” (ML) extreme value index estimator, based on the excesses over a high random

threshold, denoted PORT-ML, with PORT standing for peaks over random thresholds, with a similar

ML estimator, denoted PORT-MP, with MP standing for modified-Pareto. The PORT-MP estimator is

based on the same excesses, but with a trial of accommodation of bias on the Generalized Pareto model

underlying those excesses. We next compare such a behaviour of these ML implicit estimators with the

equivalent behaviour of a few explicit tail index estimators, the Hill, the moment, the generalized Hill

and the mixed moment. As expected, none of the estimators can always dominate the alternatives, even

when we include second-order MVRB tail index estimators, with MVRB standing for minimum-variance

reduced-bias. However, the asymptotic performance of the MVRB estimators is quite interesting and

provides a challenge for a further study of these MVRB estimators at optimal levels.

1 Introduction and preliminaries

Heavy-tailed models are quite useful in the most diversified areas of application, like computer

science, telecommunication networks, insurance, finance and biostatistics, among others. Power

laws, such as the Pareto income distribution (Pareto, 1965) and the Zipf’s law for city-size
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distribution (Zipf, 1941), have been observed a few decades ago in important phenomena in

economics and biology and have seriously attracted scientists in recent years.

In statistics of extremes, whenever dealing with large values, and with the notation RVα

standing for the class of regularly varying functions at infinity with an index of regular variation

equal to α, i.e., positive measurable functions g such that lim
t→∞

g(tx)/g(t) = xα, for all x > 0, a

model F is said to be heavy-tailed whenever the right-tail

F := 1− F ∈ RV−1/γ for some γ > 0. (1.1)

We then have a polynomially decreasing right-tail. Equivalently (Gnedenko, 1943), we are then

in the domain of attraction for maxima of a Fréchet-type extreme value distribution function

(d.f.),

EVγ(x) = exp(−(1 + γx)−1/γ), x ≥ −1/γ, with γ > 0,

and we write F ∈ DM(EVγ>0). The parameter γ is the extreme value index or tail index, the

primary parameter of extreme events.

For consistent semi-parametric estimation of the tail index γ we need to work with an

intermediate number k of top order statistics (o.s.’s), i.e., we need to consider a sequence of

integers k = kn, k ∈ [1, n), such that

k = kn →∞, and kn = o(n), as n→∞. (1.2)

1.1 Explicit tail index estimators

Due to its simplicity, the most popular tail index estimator, valid only for γ ≥ 0, is the Hill

estimator (Hill, 1975), with the functional form

γ̂Hn,k :=
1
k

k∑
i=1

{lnXn−i+1:n − lnXn−k:n} =:
1
k

k∑
i=1

V
ik
, (1.3)

where Xi:n denotes, as usual, the i-th ascending o.s., 1 ≤ i ≤ n, associated with a random

sample (X1, X2, · · · , Xn).

Apart from the Hill estimator, and with the notation

M
(j)
n,k :=

1
k

k∑
i=1

V j
ik
, L

(j)
n,k := 1− 1

k

k∑
i=1

(
1− Xn−k:n

Xn−i+1:n

)j
, j ≥ 1, (1.4)
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with V
ik
, 1 ≤ i ≤ k defined in (1.3), we shall also consider

• the moment estimator (Dekkers et al., 1989), given by

γ̂Mn,k := M
(1)
n,k + 1

2

{
1−

(
M

(2)
n,k/

(
M

(1)
n,k

)2 − 1
)−1}

, (1.5)

• the generalized Hill estimator (Beirlant et al., 1996), based on the Hill estimator in (1.3)

and with the functional form

γ̂GHn,k = γ̂Hn,k +
1
k

k∑
i=1

{
ln γ̂Hn,i − ln γ̂Hn,k

}
, (1.6)

further studied in Beirlant et al. (2005), and

• the mixed moment estimator (Fraga Alves et al., 2009), based on the statistics M (1)
n,k and

L
(1)
n,k in (1.4), and given by

γ̂MM
n,k :=

ϕ̂n,k − 1
1 + 2 min (ϕ̂n,k − 1, 0)

, with ϕ̂n,k :=
M

(1)
n,k − L

(1)
n,k(

L
(1)
n,k

)2 . (1.7)

The estimators in (1.5), (1.6) and (1.7) are valid for all γ ∈ R, but will be considered only for

γ ≥ 0. None of the estimators in this Section is invariant for changes in location, but they

can easily be made location-invariant with the technique used in Araújo Santos et al. (2006),

Gomes et al. (2008a) and Fraga Alves et al. (2009).

1.2 PORT-ML and PORT-MP tail index estimators

As mentioned in de Haan and Ferreira (2006), the class of d.f.’s F ∈ DM(EVγ), for some γ > 0

(or, more generally, for γ ∈ R), cannot be parameterized with a finite number of parameters,

and consequently, there does not exist a maximum-likelihood (ML) estimator for γ in such a

wide class of models. There exists however an estimator, introduced by Smith (1987), usually

denoted as the ML estimator. Such an estimator is based on the excesses over a deterministic

high level u, but can be easily rephrased on the basis of the excesses over the high random

threshold Xn−k:n,

Wik := Xn−i+1:n −Xn−k:n, 1 ≤ i ≤ k < n. (1.8)
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For models in (1.1), these excesses are approximately distributed as the whole set of the k o.s.’s

associated with a sample of size k from a Generalized Pareto (GP) model, with d.f.

GP (x; γ, α) = 1− (1 + α x)−1/γ , x > 0 (α, γ > 0),

a re-parametrization due to Davison (1984). Indeed, αWik is well approximated by Y γ
k−i+1:k−1,

with Y a unit Pareto r.v., with d.f. FY (y) = 1− 1/y, y ≥ 1. The solution of the ML equations

associated with the above mentioned set-up gives rise to an explicit expression for the ML

estimator of γ, a function of the ML-implicit estimator α̂ML of α and the sample of the excesses,

given by

γ̂ML
n,k ≡ γ̂ML

n,k,α̂
ML

:=
1
k

k∑
i=1

ln(1 + α̂ML Wik), (1.9)

and here called PORT-ML tail index estimator, with PORT standing for peaks over random

threshold, a terminology introduced in Araújo Santos et al. (2006) whenever working with

excesses over a central o.s., also adequate to excesses over any intermediate o.s. A comprehensive

study of the asymptotic properties of the ML estimator in (1.9) has been undertaken in Drees et

al. (2004). Weak consistency is attained whenever we work with models in (1.1) and condition

(1.2) holds.

Remark 1.1. A simple heuristic estimator of α is 1/Xn−k:n. If we consider α̂ = 1/Xn−k:n

and the excesses W
ik
, 1 ≤ i ≤ k, in (1.8), 1 + α̂ Wik = Xn−i+1:n/Xn−k:n, and γ̂ML

n,k =
1
k

∑k
i=1 {lnXn−i+1:n − lnXn−k:n} is the average of the log-excesses Vik, 1 ≤ i ≤ k, i.e., it is the

classical Hill estimator in (1.3).

Dealing with heavy tails only, we are also interested in a similar ML estimator, based on

the excesses over a high random threshold, but with a trial of accommodation of bias on the

GP model underlying those excesses. Gomes et al. (2008b) suggested the use of an adequate

weighting of the log-excesses Vik instead of the Hill estimator. These same weights

p
ik

= p
ik

(β, ρ) = e−β(n/k)ρψik −→
k→∞

1, ψik = −(i/k)−ρ − 1
ρ ln(i/k)

, 1 ≤ i ≤ k,

dependent on a vector of second-order unknown parameters (β, ρ) ∈ R\{0}×R−, made explicit

in Section 2 of this paper, are such that, uniformly in i,

αW
ik
−
(
Y
γ/p

ik
k−i+1:k − 1

)
= op

(
αW

ik
−
(
Y γ
k−i+1:k − 1

))
.
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The validity of this result led Gomes and Henriques-Rodrigues (2008) to expect to possibly

be able to get a “better” estimator of γ, provided that one uses for αWik the approximation

Y
γ/p

ik
k−i+1:k−1 instead of the approximation Y γ

k−i+1:k−1, used to support the PORT-ML estimator.

The maximization of the log-likelihood associated with such an approximation, for 1 ≤ i ≤ k,

leads us to

γ̂MP
n,k ≡ γ̂MP

n,k,α̂
MP

,β̂,ρ̂
:=

1
k

k∑
i=1

pik(β̂, ρ̂) ln(1 + α̂MPWik), (1.10)

called the PORT-MP tail index estimator, with MP standing for modified Pareto. The esti-

mators (β̂, ρ̂) need to be adequate consistent estimators of the second-order parameters (β, ρ),

essentially such that ρ̂− ρ = op(1/ lnn), as n→∞.

Remark 1.2. If we now replace, in (1.10), α̂MP by the heuristic estimator α̂ = 1/Xn−k:n, we

get the weighted log-excesses or weighted-Hill (WH) estimator,

γ̂WH
n,k ≡ γ̂WH

n,k,β̂,ρ̂
:=

1
k

k∑
i=1

e−β̂ (n/k)ρ̂ ψ̂ik Vik, (1.11)

introduced and studied in Gomes et al. (2008b).

Remark 1.3. Another bias-corrected Hill (CH) estimator, and the simplest one among the

ones so far devised, was introduced in Caeiro et al. (2005). It has the functional form

γ̂CHn,k ≡ γ̂CHn,k,β̂,ρ̂ := γ̂Hn,k
(
1− β̂(n/k)ρ̂/(1− ρ̂)

)
. (1.12)

The estimators in (1.11) and (1.12) can both be second-order minimum-variance reduced-bias

(MVRB) estimators, for adequate levels k and an adequate external estimation of a vector of

second-order parameters, (β, ρ), introduced in Section 2 of this article, i.e., the use of γ̂WH
n,k or

γ̂CHn,k , and an adequate estimation of (β, ρ), enables us to eliminate the dominant component of

bias of the Hill estimator, γ̂Hn,k , keeping its asymptotic variance.

1.3 Scope of the paper

In this article, after reviewing, in Section 2, a few technical details in statistics of extremes

related with the topic under consideration, we go on, in Section 3, with the asymptotic com-

parison at optimal levels of the different classical estimators under consideration, the Hill, the
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moment, the generalized Hill, the mixed moment, the PORT-ML and the PORT-MP, in (1.3),

(1.5), (1.6), (1.7), (1.9) and (1.10), respectively. We next see that the consideration of the

WH-estimators, in (1.11), or the CH-estimators, in (1.12), enable us to get better estimators

at the whole (γ, ρ)-plane, possibly excluding the important region γ + ρ = 0, as well as the

region γ = −ρ/(1− ρ). This surely provides a challenge for a further comparative study of RB

estimators at optimal levels, out of the scope of this paper.

2 Further technical details in statistics of extremes

2.1 First- and second-order framework for heavy-tailed models

In a context of heavy tails, and with the notation

U(t) := F←(1− 1/t), t ≥ 1, with F←(y) := inf{x : F (x) ≥ y}

the generalized inverse function of the underlying model F , the first order parameter (or tail

index) γ (> 0) appears, for every x > 0, as the limiting value

γ = lim
t→∞

lnU(tx)− lnU(t)
lnx

(de Haan, 1970).

Indeed, we can write, equivalently to (1.1),

F ∈ RV−1/γ ⇐⇒ U ∈ RVγ . (2.1)

In order to obtain information on the non-degenerate asymptotic behaviour of semi-

parametric tail index estimators, we need further assuming a second-order condition, ruling

the rate of convergence in the first order condition in (2.1). The second-order parameter, ρ

(≤ 0), rules such a rate of convergence, and it is the parameter appearing in

lim
t→∞

lnU(tx)− lnU(t)− γ lnx
A(t)

=

 xρ−1
ρ if ρ < 0

lnx if ρ = 0,
(2.2)

which we often assume to hold for every x > 0, and where |A| must then be in RVρ (Geluk

and de Haan, 1987). This condition has been widely accepted as an appropriate condition to

specify the right-tail of a Pareto-type distribution in a semi-parametric way. For reduced-bias
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estimators, and for technical simplicity, we often even assume that we are working in Hall-Welsh

class of models (Hall and Welsh, 1985), with a tail function

F (x) = 1− F (x) =
( x
C

)−1/γ(
1 +

β

ρ

( x
C

)ρ/γ
+ o(xρ/γ)

)
, as x→∞,

with C > 0, β 6= 0 and ρ < 0. Equivalently, we can say that, with (β, ρ) a vector of second-order

parameters, the general second-order condition in (2.2) holds with

A(t) = γ β tρ, ρ < 0.

Equivalently, we get

U(t) = C tγ
(

1 +
γ β tρ

ρ
+ o(tρ)

)
, as t→∞. (2.3)

Models like the log-gamma and the log-Pareto (ρ = 0) are thus excluded from this class. The

standard Pareto is also excluded. But most heavy-tailed models used in applications, like the

Fréchet, the generalized Pareto, the Burr and the Student’s t d.f.’s belong to Hall-Welsh class

of distributions.

For details on algorithms for the (β, ρ)-estimation, see Gomes and Pestana (2007) and

Gomes et al. (2008). We have so far suggested the use of the ρ-estimators in Fraga Alves et al.

(2003) and the β-estimators in Gomes and Martins (2002).

2.2 Motivation for the PORT-MP estimators — only γ is unknown.

Let us assume that everything is known, apart from γ. Then,

Theorem 2.1 (Gomes and Henriques-Rodrigues, 2008). For models in Hall-Welsh class, in

(2.3), and for intermediate levels k, i.e. if (1.2) holds, we get for γ̂MP
n,k,α,β,ρ, with γ̂MP

n,k,α̂
MP

,β̂,ρ̂

provided in (1.10), an asymptotic distributional representation of the type

γ̂MP
n,k,α,β,ρ

d= γ +
γ√
k
Nk + op(A(n/k)),

where Nk is asymptotically standard normal. Consequently, and as n→∞,
√
k
(
γ̂MP
n,k,α,β,ρ − γ

)
is asymptotically normal, with a null mean value, not only when

√
k A(n/k)→ 0, but also when

√
k A(n/k)→ λ 6= 0, finite.
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The main problems to be dealt with are related with the study of how the estimation of

(α, β, ρ) affects the asymptotic distributional behaviour of γ̂MP
n,k,α,β,ρ. Theorem 2.1 still holds for

γ̂MP
n,α,β̂,ρ̂

, i.e. we still have MVRB tail index estimators, if we assume α known and we estimate

β and ρ externally, in an adequate way, i.e., so that ρ̂ − ρ = op(1/ lnn) and β̂ − β = op(1). If

we estimate α and γ jointly through the maximum likelihood procedure, we no longer have a

MVRB estimator, as can be seen in the following Section, Theorem 2.2.

2.3 Asymptotic behaviour of the tail index estimators

Under the validity of the second-order condition in (2.2), trivial adaptations of the results in

Beirlant et al. (2005), Caeiro et al. (2005), de Haan and Ferreira (2006), Gomes and Henriques-

Rodrigues (2008), Gomes et al. (2008b) and Fraga Alves et al. (2009) enable us to state, without

proof, the following theorem, again for models with γ > 0. Let the notation N
(
µ, σ2

)
stand

for a normal r.v. with mean value µ and variance σ2.

Theorem 2.2. Assume that condition (2.2) holds. Let k = kn be an intermediate sequence,

i.e. (1.2) holds, and let us additionally assume that we are working with values of k such that

λ := lim
n→∞

√
k A(n/k)

is finite. We can then guarantee that

√
k
(
γ̂•n,k − γ

) d−→
n→∞

N
(
λb•, σ

2
•
)
,

where

bH =
1

1− ρ
, bM = bGH =

γ − γρ+ ρ

γ(1− ρ)2
, bMM = bML =

(1 + γ)(γ + ρ)
γ(1− ρ)(1 + γ − ρ)

,

σ2
H

= γ2, σ2
M

= σ2
GH

= 1 + γ2, and σ2
MM

= σ2
ML

= (1 + γ)2.

If we further assume to be working in Hall-Welsh class of models in (2.3), and estimate β

and ρ consistently through β̂ and ρ̂, in such a way that ρ̂− ρ = op(1/ lnn), we get

bWH = bCH = 0, bMP = −(1 + γ)(1 + 2γ)
γ3

(1
ρ

ln
(1 + γ)(1− ρ)

1 + γ − ρ
+

γ

1 + γ − ρ

)
,

σ2
WH

= σ2
CH

= σ2
H

= γ2 and σ2
MP

= σ2
MM

= σ2
ML

= (1 + γ)2.
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Remark 2.1. As can be seen from Theorem 2.2, the PORT-MP tail index estimator is no

longer a MVRB estimator or even a second-order reduced-bias tail index estimator, i.e., the

estimation of α through maximum-likelihood gives rise to a dominant component of bias of the

order of A(n/k). Note however that the estimation of α through the simple heuristic estimator

α̂ = 1/Xn−k:n leads us to the MVRB estimator (1.11), already mentioned in Remark 1.2. We

then have

γ̂WH
n,k

d= γ +
γ√
k
Nk + op(A(n/k)),

provided that we estimate β and ρ externally, in an adequate way, i.e., so that ρ̂−ρ = op(1/ lnn)

and β̂ − β = op(1) for all k on which we base γ̂WH
n,k ≡ γ̂WH

n,k,β̂,ρ̂
. A similar asymptotic behaviour

holds for the estimator γ̂CHn,k in (1.12).

Remark 2.2. Relatively to Smith’s result, rephrased in this context in Theorem 2.2 (i.e. with

the replacement of a fixed threshold u by a random threshold Xn−k:n), we have for the PORT-MP

the same asymptotic variance we had for the PORT-ML tail index estimator, the value (1+γ)2,

but a change in bias, although both bias are of the same order if γ+ρ 6= 0. If γ+ρ = 0 the PORT-

ML estimator, being a second-order reduced-bias estimator of γ, is expected to outperform the

PORT-MP estimator.

3 Asymptotic comparison at optimal levels.

We now proceed to an asymptotic comparison of the estimators at their optimal levels in the

lines of de Haan and Peng (1998), Gomes and Martins (2001), Gomes et al. (2005; 2007) and

Gomes and Neves (2008). Suppose that γ̂•n,k is any general semi-parametric estimator of the

tail index, with distributional representation,

γ̂•n,k = γ +
σ•√
k
Z•n + b•A(n/k) + op(A(n/k)),

which holds for any intermediate k, and where Z•n is an asymptotically standard normal r.v.

Then we have,
√
k
(
γ̂•n,k − γ

) d−→ N (λb•, σ2
•), as n→∞,

provided k is such that
√
kA(n/k)→ λ, finite, as n→∞.
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The Asymptotic Mean Square Error (AMSE) is defined as

AMSE
(
γ̂•n,k

)
:=

σ2
•
k

+ b2•A
2(n/k),

where Bias∞
(
γ̂•n,k

)
:= b•A(n/k) and V ar∞

(
γ̂•n,k

)
:= σ2

•/k.

Let k•0 = k•0(n):=arg mink AMSE
(
γ̂•n,k

)
be the optimal level for the estimation of γ through

γ̂•n,k, i.e., the level associated with a minimum AMSE, and let us denote γ̂•n0 := γ̂•n,k•0
, the

estimator computed at its optimal level. The use of regular variation theory (Bingham et al.

1987) enabled Dekkers and de Haan (1993) to prove that, whenever b• 6= 0, ∃ ϕ(n) = ϕ(n; ρ, γ),

dependent only on the underlying model, and not on the estimator, such that

lim
n→∞

ϕ(n)AMSE
(
γ̂•n0

)
=

2ρ− 1
ρ

(
σ2
•
)− 2ρ

1−2ρ
(
b2•
) 1

1−2ρ =: LMSE
(
γ̂•n0

)
.

It is then sensible to consider the following:

Definition 3.1. Given γ̂
(1)
n0 = γ̂

(1)

n,k
(1)
0

and γ̂
(2)
n0 = γ̂

(2)

n,k
(2)
0

, based on two biased estimators γ̂(1)
n,k

and γ̂
(2)
n,k for which distributional representations of the above-mentioned type hold with con-

stants (σ1, b1) and (σ2, b2), b1, b2 6= 0, respectively, both computed at their optimal levels, the

Asymptotic Root Efficiency (AREFF ) of γ̂(1)
n0 relatively to γ̂(2)

n0 is

AREFF1|2 ≡ AREFFγ̂(1)
n0 |γ̂

(2)
n0

:=

√√√√LMSE
(
γ̂

(2)
n0

)
LMSE

(
γ̂

(1)
n0

) ,
with LMSE given before.

Remark 3.1. Note that this measure was devised so that the higher the AREFF measure, the

better the first estimator is.

Remark 3.2. If b• = 0, the squared bias summand is o(A2(n/k)), and consequently the asso-

ciated LMSE
(
γ̂•n0

)
= 0.

In the (γ, ρ)-plane, the AREFF of γ̂MP
n0 relatively to γ̂ML

n0 , already computed in Gomes and

Henriques-Rodrigues (2008), is presented in Figure 1. As can be seen from Figure 1, the gain
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in efficiency for the PORT-MP estimator happens for two regions of values of (γ > 0, ρ < 0),

away from γ + ρ = 0 and close to either γ = 0 or to ρ = 0. In the region γ + ρ = 0, the

PORT-ML estimator is a second-order reduced-bias tail index estimator, and consequently, it

is expected to outperform the PORT-MP estimator at optimal levels. These results claim for

a semi-parametric test of the hypothesis H0 : η = γ + ρ = 0. The non-rejection of such an

hypothesis would lead us to the consideration of the PORT-ML estimator, things working in

favor of the PORT-MP estimator, in case of rejection of H0. This is however an open subject,

out of the scope of this paper.
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-1.20 1.2 1.1 1.0 1.0 0.9 0.9 0.8 0.8 0.7 0.6 0.5 0.0 0.5 0.6 0.7 0.7 0.8 0.8 0.9 0.9

-1.30 1.2 1.1 1.1 1.0 1.0 0.9 0.9 0.8 0.8 0.7 0.6 0.5 0.0 0.5 0.6 0.7 0.7 0.8 0.8 0.9

-1.40 1.1 1.1 1.1 1.0 1.0 0.9 0.9 0.9 0.8 0.8 0.7 0.6 0.5 0.0 0.5 0.6 0.7 0.7 0.8 0.8

-1.50 1.1 1.1 1.1 1.0 1.0 0.9 0.9 0.9 0.8 0.8 0.7 0.7 0.6 0.5 0.0 0.5 0.6 0.7 0.7 0.8

-1.60 1.1 1.1 1.1 1.0 1.0 1.0 0.9 0.9 0.9 0.8 0.8 0.7 0.7 0.6 0.5 0.0 0.5 0.6 0.7 0.7

-1.70 1.1 1.1 1.1 1.0 1.0 1.0 0.9 0.9 0.9 0.8 0.8 0.8 0.7 0.7 0.6 0.5 0.0 0.5 0.6 0.7

-1.80 1.1 1.1 1.1 1.0 1.0 1.0 0.9 0.9 0.9 0.9 0.8 0.8 0.8 0.7 0.7 0.6 0.5 0.0 0.5 0.6

-1.90 1.1 1.1 1.1 1.0 1.0 1.0 1.0 0.9 0.9 0.9 0.9 0.8 0.8 0.8 0.7 0.7 0.6 0.5 0.0 0.5

-2.00 1.1 1.1 1.1 1.0 1.0 1.0 1.0 0.9 0.9 0.9 0.9 0.9 0.8 0.8 0.8 0.7 0.7 0.6 0.6 0.0
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Figure 1: AREFF indicator of γ̂MP
n0 relatively to γ̂ML

n0 .

Next, in Figure 2 we present for the (γ, ρ)-plane, with γ ≥ 0, ρ ≤ 0, the region where

the moment estimator in (1.5) (denoted Mo), or equivalently the generalized Hill estimator

in (1.6), beats the Hill estimator in (1.3). As can be seen in Figure 3, the MM-estimator in

(1.7) (asymptotically equivalent to the ML-estimator in (1.9), unless γ + ρ = 0 and (γ, ρ) 6=

(0, 0)), and the ML-estimator can outperform the Hill and/or the moment estimators at optimal

levels. In Figure 4 we show the comparative behaviour at optimal levels of the PORT-ML and

PORT-MP tail index estimators, in (1.9) and (1.10), respectively, also comparatively with the
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equivalent behaviour of the MM- and ML-estimators. In Figure 5 we exhibit the comparative

behaviour of all “classical” tail index estimators under study.
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Figure 2: The moment can outperform the Hill estimator at optimal levels
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Figure 3: The MM (≡ML, unless γ + ρ = 0, (γ, ρ) 6= (0, 0)) and the ML can outperform the

Hill and/or the moment estimators at optimal levels
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Figure 4: The PORT-MP can outperform the MM estimator at optimal levels
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Figure 5: Comparative overall behaviour of the classical tail index estimators under comparison.

Finally, we enhance the fact that in the region γ + ρ 6= 0 and γ 6= −ρ/(1 − ρ) the WH-

estimators in (1.11), as well as the CH-estimators in (1.12), overpass all other classical estima-

tors under consideration. The region γ + ρ = 0 (where bML = bMM = bWH = bCH = 0) as well

13



as the region γ = −ρ/(1 − ρ), (where bM = bGH = bWH = bCH = 0) are “technically difficult”

to handle and deserve further attention. The MM , the ML, the WH and the CH estimators,

in (1.7), (1.9), (1.11) and (1.12), respectively, are all second-order reduced-bias estimators in

the region γ + ρ = 0. The MM and the ML estimators have an asymptotic variance equal to

γ2 + 1 > γ2, the asymptotic variance of WH and CH. However, this does not mean too much.

All depends on the dominant component of bias . . . and it is without doubt a challenge for fur-

ther research, out of the scope of this paper. A similar comment applies to the behaviour of the

M , the GH, the WH and the CH-estimators in the region γ = −ρ/(1− ρ). Again, despite of

the fact that the M and the GH estimators have an asymptotic variance equal to (1+γ)2 > γ2,

the asymptotic variance of WH and CH, all depends on the comparative behaviour of the

mean squared errors.
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[14] Gomes, M.I., Fraga Alves, M.I., and Araújo Santos, P. (2008a). PORT Hill and Moment Estimators

for Heavy-Tailed Models. Commun. Statist. – Simul. & Comput. 37, 1281-1306.

[15] Gomes, M.I., Haan, L. de, and Henriques-Rodrigues, L. (2008b). Tail index estimation through

accommodation of bias in the weighted log-excesses. J. Royal Statistical Society B70, Issue 1,

31-52.

[16] Gomes, M.I., and Henriques-Rodrigues, L. (2008). Tail index estimation for heavy tails: accommo-

dation of bias in the excesses over a high threshold. Extremes, 11:3, 303-328.

[17] Gomes, M.I., and Martins, M.J. (2001). Alternatives to Hill’s estimator — asymptotic versus finite

sample behaviour. J. Statist. Planning and Inference 93, 161-180.

[18] Gomes, M.I., and Martins M.J. (2002). “Asymptotically unbiased” estimators of the tail index

based on external estimation of the second order parameter. Extremes 5:1, 5-31.

[19] Gomes, M.I., Miranda, C., and Pereira, H. (2005). Revisiting the role of the Jackknife methodology

in the estimation of a positive extreme value index. Comm. in Statistics – Theory and Methods 34,

1-20.

[20] Gomes, M.I., Miranda, C., and Viseu, C. (2007). Reduced bias extreme value index estimation and

the Jackknife methodology, Statistica Neerlandica 61:2, 243-270.

[21] Gomes, M.I., and Neves, C. (2008). Asymptotic comparison of the mixed moment and classical

extreme value index estimators. Statistics and Probability Letters 78:6, 643-653.

15



[22] Gomes, M.I., and Pestana, D. (2007). A sturdy reduced-bias extreme quantile (VaR) estimator. J.

American Statistical Association, Vol. 102, No. 477, 280-292.

[23] Haan, L. de (1970). On Regular Variation and its Application to the Weak Convergence of Sample

Extremes. Mathematical Centre Tract 32, Amsterdam.

[24] Haan, L. de, and Ferreira, A. (2006). Extreme Value Theory: an Introduction. Springer Sci-

ence+Business Media, LLC, New York.

[25] Haan, L. de, and Peng, L. (1998). Comparison of tail index estimators. Statistica Neerlandica 52,

60-70.

[26] Hall, P., and Welsh, A.H. (1985). Adaptive estimates of parameters of regular variation. Ann.

Statist. 13, 331-341.

[27] Hill, B.M. (1975). A simple general approach to inference about the tail of a distribution. Ann.

Statist. 3, 1163-1174.

[28] Pareto, V. (1965). Oeuvres Complètes. Geneva, Droz.
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